如图,已知抛物线y=-34x2+94x+3与x轴交于A、B两点(A在B的左侧),与y轴交于点C.(1)求A、B、C三点的坐标;(2)求直线BC的函数解析式;(3

如图,已知抛物线y=-34x2+94x+3与x轴交于A、B两点(A在B的左侧),与y轴交于点C.(1)求A、B、C三点的坐标;(2)求直线BC的函数解析式;(3

题型:不详难度:来源:
如图,已知抛物线y=-
3
4
x2+
9
4
x+3与x轴交于A、B两点(A在B的左侧),与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)求直线BC的函数解析式;
(3)点P是直线BC上的动点,若△POB为等腰三角形,请写出此时点P的坐标.(可直接写出结果)
答案
(1)当y=0时,得方程0=-
3
4
x2+
9
4
x+3,
解得x=-1或x=4,
所以点A、B的坐标分别为(-1,0),(4,0)
当x=0时,y=3,
所以点C的坐标为(0,3)

(2)设直线BC的函数解析式为y=kx+b
由(1)可得





0=4k+b
3=b

解得





k=-
3
4
b=3

所以直线BC的函数解析式为:y=-
3
4
x+3

(3)P1(2,
3
2
),P2
36
5
,-
12
5
),P3
4
5
12
5
),P4(-
28
25
96
25
).
举一反三
在梯形ABCD中,ADBC,BA⊥AC,∠B=45°,AD=2,BC=6,以BC所在直线为x轴,建立如图所示的平面直角坐标系,点A在y轴上.
(1)求过A、D、C三点的抛物线的解析式.
(2)求△ADC的外接圆的圆心M的坐标,并求⊙M的半径.
(3)E为抛物线对称轴上一点,F为y轴上一点,求当ED+EC+FD+FC最小时,EF的长.
(4)设Q为射线CB上任意一点,点P为对称轴左侧抛物线上任意一点,问是否存在这样的点P、Q,使得以P、Q、C为顶点的△与△ADC相似?若存在,直接写出点P、Q的坐标;若不存在,则说明理由.
题型:不详难度:| 查看答案
如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(-1,-2)、(1,-2),点B的横坐标的最大值为3,则点A的横坐标的最小值为(  )
A.-3B.-1C.1D.3

题型:不详难度:| 查看答案
如图,在平面直角坐标系中,以点A(3,0)为圆心,以5为半径的圆与x轴相交于B、C,与y轴相交于点D、E.若抛物线y=
1
4
x2+bx+c
经过C、D两点,求抛物线的解析式,并判断点B是否在抛物线上.
题型:不详难度:| 查看答案
某商店将进价为100元的某商品按120元的价格出售,可卖出300个;若商店在120元的基础上每涨价1元,就要少卖10个,而每降价1元,就可多卖30个.
(1)求所获利润y(元)与售价x(元)之间的函数关系式;
(2)为获利最大,商店应将价格定为多少元?
(3)为了让利顾客,在利润相同的情况下,请为商店选择正确的出售方式,并求出此时的售价.
题型:不详难度:| 查看答案
如图,在直角坐标系中,点A的坐标为(-2


3
,0),⊙P刚好与x轴相切于点A,⊙P交y的正半轴于点B,点C,且BC=4.
(1)求半径PA的长;
(2)求证:四边形CAPB为菱形;
(3)有一开口向下的抛物线过O,A两点,当它的顶点不在直线AB的上方时,求函数表达式的二次项系数a的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.