在平面直角坐标系xOy中,已知直线l1经过点A(-2,0)和点B(0,),直线l2的函数表达式为,l1与l2相交于点P,⊙C是一个动圆,圆心C在直线l1上运动,

在平面直角坐标系xOy中,已知直线l1经过点A(-2,0)和点B(0,),直线l2的函数表达式为,l1与l2相交于点P,⊙C是一个动圆,圆心C在直线l1上运动,

题型:浙江省中考真题难度:来源:
在平面直角坐标系xOy中,已知直线l1经过点A(-2,0)和点B(0,),直线l2的函数表达式为,l1与l2相交于点P,⊙C是一个动圆,圆心C在直线l1上运动,设圆心C的横坐标是a,过点C作CM⊥x轴,垂足是点M。

(1)填空:直线l1的函数表达式是____,交点P的坐标是____,∠FPB的度数是____;
(2)当⊙C和直线l2相切时,请证明点P到直线CM的距离等于⊙C的半径R,并写出R=时a的值;
(3)当⊙C和直线l2不相离时,已知⊙C的半径R=,记四边形NMOB的面积为S(其中点N是直线CM与l2的交点),S是否存在最大值?若存在,求出这个最大值及此时a的值;若不存在,请说明理由。
答案
解:(1);60°;
(2)设⊙C和直线l2相切时的一种情况如图甲所示,D是切点,连接CD,则CD⊥PD,
过点P作CM的垂线PG,垂足为G,则Rt△CDP≌Rt△PGC(∠PCD=∠CPG=30°,CP=PC),
所以PG=CD=R,
当点C在射线PA上,⊙C和直线l2相切时,同理可证,
取R=-2时,a=1+R=-1,或a=-(R-1)=3-
(3)当⊙C和直线l2不相离时,由(2)知,分两种情况讨论:
①如图乙,当0≤a≤时,

当a=时,(满足a≤),S有最大值,此时

②当≤a<0时,显然⊙C和直线l2相切即时,S最大,此时

综合以上①和②,当a=3或时,存在S的最大值,其最大面积为
举一反三
如图,在矩形ABCD中,AB=3cm,BC=4cm.设P,Q分别为BD,BC上的动点,在点P自点D沿DB方向作匀速移动的同时,点Q自点B沿BC方向向点C作匀速移动,移动的速度均为1cm/s,设P,Q移动的时间为t(0<t≤4)。
(1)写出△PBQ的面积S(cm2)与时间t(s)之间的函数表达式,当t为何值时,S有最大值,最大值是多少?
(2)当t为何值时,△PBQ为等腰三角形?
(3)△PBQ能否成为等边三角形?若能,求t的值;若不能,说明理由。
题型:山东省中考真题难度:| 查看答案
如图,Rt△AOB是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点B在y轴上,OB=,∠BAO=30度,将Rt△AOB折叠,使BO边落在BA边上,点O与点D重合,折痕为BC。

(1)求直线BC的解析式;
(2)求经过B,C,A三点的抛物线y=ax2+bx+c的解析式;若抛物线的顶点为M,试判断点M是否在直线BC上,并说明理由。
题型:山东省中考真题难度:| 查看答案
如图,在平面直角坐标系中,已知点B(-2,0),A(m,0)(-<m<0),以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆除点D以外的另一个交点,连接BE与AD相交于点F。

(1)求证:BF=DO;
(2)设直线l是△BDO的边BO的垂直平分线,且与BE相交于点G,若G是△BDO的外心,试求经过B、F、O三点的抛物线的解析表达式;
(3)在(2)的条件下,在抛物线上是否存在点P,使该点关于直线BE的对称点在x轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由。
题型:中考真题难度:| 查看答案
已知二次函数图象的顶点在原点O,对称轴为y轴,一次函数y=kx+1的图象与二次函数的图象交于A,B两点(A在B的左侧),且A点坐标为(-4,4),平行于x轴的直线l过(0,-1)点。

(1)求一次函数与二次函数的解析式;
(2)判断以线段AB为直径的圆与直线l的位置关系,并给出证明;
(3)把二次函数的图象向右平移2个单位,再向下平移t个单位(t>0),二次函数的图象与x轴交于M,N两点,一次函数图象交y轴于F点,当t为何值时,过F,M,N三点的圆的面积最小,最小面积是多少?
题型:山东省中考真题难度:| 查看答案
已知关于x的二次函数,这两个二次函数的图象中的一条与x轴交于A,B两个不同的点。
(1)试判断哪个二次函数的图象可能经过A,B两点;
(2)若A点坐标为(-1,0),试求出B点坐标;
(3)在(2)的条件下,对于经过A,B两点的二次函数,当x取何值时,y的值随x值的增大而减小。
题型:中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.