(1)∵∠ABC与∠ADC互补, ∴∠ABC+∠ADC=180°. ∵∠A=90°, ∴∠C=360°-90°-180°=90°;
(2)过点A作AE⊥BC,垂足为E. 则线段AE把四边形ABCD分成△ABE和四边形AECD两部分,把△ABE以A点为旋转中心,逆时针旋转90°,则被分成的两部分重新拼成一个正方形. 过点A作AF∥BC交CD的延长线于F, ∵∠ABC+∠ADC=180°,又∠ADF+∠ADC=180°, ∴∠ABC=∠ADF. ∵AD=AB,∠AEC=∠AFD=90°,∴△ABE≌△ADF. ∴AE=AF.∴四边形AECF是正方形;
(3)解法1:连接BD, ∵∠C=90°,CD=6,BC=8,Rt△BCD中,BD==10 又∵S四边形ABCD=49,∴S△ABD=49-24=25. 过点A作AM⊥BD垂足为M, ∴S△ABD=×BD×AM=25.∴AM=5. 又∵∠BAD=90°,∴△ABM∽△DAM. ∴=. 设BM=x,则MD=10-x, ∴=.解得x=5. ∴AB=5. 解法2:连接BD,∠A=90°. 设AB=x,AD=y,则x2+y2=102,① ∵xy=25,∴xy=50.② 由①,②得:(x-y)2=0. ∴x=y. 2x2=100. ∴x=5. |