在□ABCD中,点E在边AD上,以BE为折痕将△ABE向上翻折,点A正好落在CD的点F处,若△FDE的周长为8,△FCB的周长为22,则YABCD的周长为
题型:不详难度:来源:
在□ABCD中,点E在边AD上,以BE为折痕将△ABE向上翻折,点A正好落在CD的点F处,若△FDE的周长为8,△FCB的周长为22,则YABCD的周长为 . |
答案
30 |
解析
根据折叠的性质可得EF=AE、BF=BA,从而?ABCD的周长可转化为:△FDE的周长+△FCB的周长,结合题意条件即可得出答案. 解:由折叠的性质可得EF=AE、BF=BA, ∴?ABCD的周长=DF+FC+CB+BA+AE+DE=△FDE的周长+△FCB的周长=30. 故答案为:30. |
举一反三
(本题满分12分) |
如图,已知正方形ABCD的边长为5,且∠EAF=45,把△ABE绕点A逆时针旋转90,落在ADG的位置. (1)请在图中画出ADG. (2)证明:∠GAF=45. (3)求点A到EF的距离AH. |
正方形ABCD的边长为5,E为边BC上一点,使得BE=3,P是对角线BD上的一点,使得PE+PC的值最小.则PB= . |
下列四个命题: ①一组对边相等且一组对角相等的四边形是平行四边形; ②一组对边相等且一条对角线平分另一条对角线的四边形是平行四边形;③一组对角相等且这一组对角的顶点所联结的对角线被另一条对角线平分的四边形是平行四边形; ④一组对角相等且这一组对角的顶点所联结的对角线平分另一条对角线的四边形是平行四边形. 其中,正确命题的序号是 . |
如图,菱形ABCD中,∠A=30°,若菱形FBCE与菱形ABCD关于BC所在的直线对称,则∠BCE的度数是
|
最新试题
热门考点