如图,在正方形ABCD中,E为AB的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为(   )A.B.2C.D.3

如图,在正方形ABCD中,E为AB的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为(   )A.B.2C.D.3

题型:不详难度:来源:
如图,在正方形ABCD中,E为AB的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为(   )
A.B.2C.D.3

答案
D.
解析

试题分析:∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∵∠GEF=90°,∴∠AEG+∠BEF=90°,∴∠AGE=∠BEF,∴△AGE∽△BEF,∴,∵E为AB的中点,∴AE=BE,∵AG=1,BF=2,∴,解得:BE=AE=,在Rt△AEG中,GE2=AG2+AE2=3,在Rt△BEF中,EF2=BE2+BF2=6,∴在Rt△GEF中,GF==3.故选D.
举一反三
如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为,则平行四边形ABCD的面积为      .(用a的代数式表示)

题型:不详难度:| 查看答案
提出问题

如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
类比探究
如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
拓展延伸
如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.
题型:不详难度:| 查看答案
数3和12的比例中项是          .
题型:不详难度:| 查看答案
已知相似且对应边上的高之比为,若的周长为8,则的周长为              
题型:不详难度:| 查看答案
如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为(  )
A.11B.10C.9D.8

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.