如图△ABC中,AB=AC,AE⊥BC,E为垂足,F为AB上一点.以BF为直径的圆与AE相切于M点,交BC于G点.(1)求证:BM平分∠ABC;(2)当BC=4

如图△ABC中,AB=AC,AE⊥BC,E为垂足,F为AB上一点.以BF为直径的圆与AE相切于M点,交BC于G点.(1)求证:BM平分∠ABC;(2)当BC=4

题型:不详难度:来源:
如图△ABC中,AB=AC,AE⊥BC,E为垂足,F为AB上一点.以BF为直径的圆与AE相切于M点,交BC于G点.
(1)求证:BM平分∠ABC;
(2)当BC=4,cosC=时,
①求⊙O的半径;
②求图中阴影部分的面积.(结果保留π与根号)

答案
(1)证明见解析;(2)
解析

试题分析:(1)连OM,根据切线的性质得OM⊥AE,而AE⊥BC,则OM∥BC,根据平行线的性质得∠OMB=∠MBC,而∠OBM=∠OMB,所以∠OBM=∠MBE;
(2)①设⊙O的半径为R,根据等腰三角形的性质得BE=CE=2,由cos∠C=得到∠C=60°,则可判断△ABC为等边三角形,所以AB=AC=BC=4,则∠OAM=30°,根据含30度的直角三角形三边的关系得到AO=2R,则2R+R=4,解得R=
②过O作OH⊥BM,H为垂足,根据垂径定理得BH=MH,易得∠AOM=60°,∠ABH=30°,根据含30度的直角三角形三边的关系可得OH=OB=,BH=OH=,所以BM=,然后根据扇形面积公式和三角形面积公式和S=S扇形FOM+S△OBM进行计算.
(1)证明:连OM,如图,

∵⊙O与AE相切于M,
∴OM⊥AE,
∵AE⊥BC,
∴OM∥BC,
∴∠OMB=∠MBC,
∵OB=OM,
∴∠OBM=∠OMB,
∴∠OBM=∠MBE,
∴BM平分∠ABC;
(2)解:①设⊙O的半径为R,
∵AB=AC,BC=4,AE⊥BC,
∴BE=CE=2,
在Rt△ACE中,cos∠C=
∴∠C=60°
∴△ABC为等边三角形,
∴AB=AC=BC=4,
∴∠OAM=30°,
∴AO=2R,
而AB=OA+BO,
∴2R+R=4,
∴R=
即⊙O的半径为
②过O作OH⊥BM,H为垂足,如图,
∵OH⊥BM,
∴BH=MH,
∵OM∥BE,
∴∠AOM=60°,
∴∠ABH=30°,
∴OH=OB=,BH=OH=
∴BM=
∴S△OBM=OH•BM=
∴S扇形FOM=
∴S=
举一反三
⊙O1、⊙O2的半径分别为3cm、4cm,圆心距O1O2为5cm,则这两圆的位置关系是( )
A.内切B.外切C.内含D.相交

题型:不详难度:| 查看答案
如图,用邻边分别为a,b(a<b)的矩形硬纸板裁出以a为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是(   )
A.b=aB.b=aC.aD.b=a

题型:不详难度:| 查看答案
如图,⊙O的半径为4,点A、B、C在⊙O上,且∠ACB=45°,则弦AB的长是  .

题型:不详难度:| 查看答案
已知扇形的圆心角为120°,半径为3,扇形的周长为    .
题型:不详难度:| 查看答案
如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有_______个.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.