如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.(1)求证:BC平分∠PDB;(2)求证:BC2=AB•BD;
题型:不详难度:来源:
如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.
(1)求证:BC平分∠PDB; (2)求证:BC2=AB•BD; (3)若PA=6,PC=6,求BD的长. |
答案
解:(1)证明:连接OC,
∵PD为圆O的切线,∴OC⊥PD。 ∵BD⊥PD,∴OC∥BD。∴∠OCB=∠CBD。 ∵OC=OB,∴∠OCB=∠OBC。 ∴∠CBD=∠OBC,即BC平分∠PBD。 (2)证明:连接AC, ∵AB为圆O的直径,∴∠ACB=90°。 ∵∠ACB=∠CDB=90°,∠ABC=∠CBD,∴△ABC∽△CBD。 ∴,即BC2=AB•BD。 (3)∵PC为圆O的切线,PAB为割线,∴PC2=PA•PB,即72=6PB,解得:PB=12。 ∴AB=PB-PA=12-6=6。∴OC=3,PO=PA+AO=9。 ∵△OCP∽△BDP,∴,即。 ∴BD=4。 |
解析
(1)连接OC,由PD为圆O的切线,由切线的性质得到OC垂直于PD,由BD垂直于PD,得到OC与BD平行,利用两直线平行得到一对内错角相等,再由OC=OB,利用等边对等角得到一对角相等,等量代换即可得证。 (2)连接AC,由AB为圆O的直径,利用直径所对的圆周角为直角得到△ABC为直角三角形,根据一对直角相等,以及(1)的结论得到一对角相等,确定出△ABC与△BCD相似,由相似得比例,变形即可得证。 (3)由切割线定理列出关系式,将PA,PC的长代入求出PB的长,由PB﹣PA求出AB的长,确定出圆的半径,由OC与BD平行得到△PCO与△DPB相似,由相似得比例,将OC,OP,以及PB的长代入即可求出BD的长。 |
举一反三
如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为【 】
|
在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为 . |
两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是【 】 |
如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为 .
|
半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是A.3 | B.4 | C. | D. |
|
最新试题
热门考点