在矩形ABCD中,点O在对角线BD上,以OD为半径的⊙O与AD、BD分别交于点E、F,且∠ABE=∠DBC. (1)求证:BE与⊙O相切;(2)若,CD=2,求

在矩形ABCD中,点O在对角线BD上,以OD为半径的⊙O与AD、BD分别交于点E、F,且∠ABE=∠DBC. (1)求证:BE与⊙O相切;(2)若,CD=2,求

题型:不详难度:来源:
在矩形ABCD中,点O在对角线BD上,以OD为半径的⊙O与AD、BD分别交于点E、F,且∠ABE=∠DBC.
 
(1)求证:BE与⊙O相切;
(2)若,CD=2,求⊙O的半径.
答案
(1)连接OE,根据矩形的性质可得AD∥BC,∠C=∠A=90°,即可得到∠3=∠DBC,∠ABE+∠1=90°,再结合OD=OE,∠ABE=∠DBC可得∠2=∠3=∠ABE,从而可以证得结论;(2)
解析

试题分析:(1)连接OE,根据矩形的性质可得AD∥BC,∠C=∠A=90°,即可得到∠3=∠DBC,∠ABE+∠1=90°,再结合OD=OE,∠ABE=∠DBC可得∠2=∠3=∠ABE,从而可以证得结论;
(2)由∠ABE =∠DBC可得,即可求得DB的长,再根据勾股定理求得DE的长,
连接EF,根据圆周角定理可得∠DEF=∠A=90°,再证得,根据相似三角形的性质即可求得结果.
(1)连接OE

∵四边形ABCD是矩形
∴AD∥BC,∠C=∠A=90°
∴∠3=∠DBC,∠ABE+∠1=90°
∵OD=OE,∠ABE=∠DBC
∴∠2=∠3=∠ABE
∴∠2+∠1=90°
∴∠BEO=90°
∵点E在⊙O上
∴BE与⊙O相切;
(2)∵∠ABE =∠DBC

∵DC=2,∠C=90°
∴DB=6
∵∠A=90°
∴BE=3AE  
∵AB=CD=2
利用勾股定理,得

连接EF  

∵DF是⊙O的直径,
∴∠DEF=∠A=90°
∴AB∥EF
 
 


∴⊙O的半径为.
点评:解答本题的关键是熟练掌握切线垂直于经过切点的半径;相似三角形的对应边成比例,注意对应字母在对应位置上.
举一反三
如图,与⊙O相切于点的延长线交⊙O于点连结则∠C等于(    )
A.36B.54C.60D.27

题型:不详难度:| 查看答案
如图,AB是半圆O的直径,E是弧BC的中点,OE交弦BC于点D.已知BC=8cm,DE=2cm,则AD的长为         cm.
题型:不详难度:| 查看答案
如图,已知AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC=PE·PO .

(1)求证:PC是⊙O的切线;
(2)若OE:EA=1:2,PA=6,求⊙O的半径;
(3)在(2)问下,求的值。
题型:不详难度:| 查看答案
如图,已知圆心角∠BOC=120°,则圆周角∠BAC的大小是
A.60°B.80°C.100°D.120°

题型:不详难度:| 查看答案
(本题8分)如图,已知在⊙O中,∠ABD=∠CDB。

(1)求证:AB=CD;
(2)顺次连结ACBD四点,猜想得到的是哪种特殊的四边形?并说明理由。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.