如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30º,∠APB=60º.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为2,求弦A

如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30º,∠APB=60º.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为2,求弦A

题型:不详难度:来源:
如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30º,∠APB=60º.

(1)求证:PB是⊙O的切线;
(2)若⊙O的半径为2,求弦AB及PA,PB的长.
答案
(1)见解析;(2)2
解析

试题分析:(1)连接OB,证PB⊥OB.根据四边形的内角和为360°,结合已知条件可得∠OBP=90°得证;
(2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的性质即可求得结果。
(1)连接OB.
∵OA=OB,∴∠OBA=∠BAC=30°.               
∴∠AOB=80°-30°-30°=20°.             
∵PA切⊙O于点A,∴OA⊥PA,
∴∠OAP=90°.
∵四边形的内角和为360°,
∴∠OBP=360°-90°-60°-20°=90°.        
∴OB⊥PB.
又∵点B是⊙O上的一点,
∴PB是⊙O的切线.                           
(2)连接OP,

∵PA、PB是⊙O的切线,
∴PA=PB,∠OPA=∠OPB=,∠APB=30°.          
在Rt△OAP中,∠OAP=90°,∠OPA=30°,
∴OP=2OA=2×2=4.                            
∴PA=OP2-OA2=2
∵PA=PB,∠APB=60°,
∴PA=PB=AB=2。
点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
举一反三
如图,点A、B、D、在⊙O上,弦AE、BD的延长线相交于点C.。若AB是⊙O的直径,D是BC的中点.

(1)试判断AB、AC之间的大小关系,并给出证明;
(2)在上述题设条件下,△ABC还需满足什么条件,点E才一定是AC的中点?(直接写出结论)
题型:不详难度:| 查看答案
如图,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等的圆与BC相切于点E,与AB相切于点F,连接EF。

(1)判断EF与AC的位置关系(不必说明理由);;
(2)如图(2),过E作BC的垂线,交圆于G,连接AG,判断四边形ADEG的形状,并说明理由。
(3)求证:AC与GE的交点O为此圆的圆心.
题型:不详难度:| 查看答案
下列语句中不正确的有(  )
①长度相等的两条弧是等弧 ②平分弦的直径垂直于弦 ③直径所对的圆周角是直角④一条弧所对的圆心角等于它所对圆周角的2倍
A.3个B.2个C.1个D.以上都不对

题型:不详难度:| 查看答案
如图,正三角形内接于圆,动点在圆上,且不与B、C重合,则等于(     )

A.      B.      C.60°或120°    D. 120°
题型:不详难度:| 查看答案
如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为(    )
A.cmB.9 cmC.cmD.cm

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.