若△BEF是直角三角形,则有两种情况:①∠BFE=90°,②∠BEF=90°;在上述两种情况所得到的直角三角形中,已知了BC边和∠B的度数,即可求得BE的长;AB的长易求得,由AE=AB-BE即可求出AE的长,也就能得出E点运动的距离(有两种情况),根据时间=路程÷速度即可求得t的值. 解:∵AB是⊙O的直径, ∴∠ACB=90°; Rt△ABC中,BC=2,∠ABC=60°; ∴AB=2BC=4cm; ①当∠BFE=90°时; ∵Rt△BEF中,∠ABC=60°,BC=2cm, ∴AB=2BC=4cm, ∵F是弦BC的中点, ∴当△BEF是直角三角形时点E与点O重合, ∴BE=2BF=2cm; 故此时AE=AB-BE=2cm; ∴E点运动的距离为:2cm或6cm,故t=1s或3s; 由于0≤t<3,故t=3s不合题意,舍去; 所以当∠BFE=90°时,t=1s; ②当∠BEF=90°时; 同①可求得BE=BF=0.5cm,此时BE=AB-AE=3.5cm; ∴E点运动的距离为:3.5cm或4.5cm,故t=1.75s或2.25s; 综上所述,当t的值为1、1.75或2.25s时,△BEF是直角三角形. 此题主要考查了圆周角定理以及直角三角形的判定和性质,同时还考查了分类讨论的数学思想. |