如图,在Rt△ABC中,∠ACB=90°,M为AB边的中点,将Rt△ABC绕点M旋转,使点A与点C重合得到△CED,连结MD.若∠B=26°,则∠BMD等于

  如图,在Rt△ABC中,∠ACB=90°,M为AB边的中点,将Rt△ABC绕点M旋转,使点A与点C重合得到△CED,连结MD.若∠B=26°,则∠BMD等于

题型:不详难度:来源:
  如图,在Rt△ABC中,∠ACB=90°,MAB边的中点,将Rt△ABC绕点M旋转,使点A与点C重合得到△CED,连结MD.若∠B=26°,则∠BMD等于(      )
A.76°B.96°C.52°D.104°

答案
A
解析

分析:先根据直角三角形两锐角互余,由∠B=26°得出∠A=64°,再根据直角三角形斜边上的中线等于斜边的一半得出MA=MC,由等角对等边及三角形内角和定理得出∠AMC=52°,然后根据旋转的性质得出△ACM≌△CDM,则∠AMC=∠CMD=52°,从而由平角的定义得出∠BMD的度数.

解:在Rt△ABC中,∵∠ACB=90°,∠B=26°,
∴∠A=64°,
又∵M为AB边的中点,
∴CM=AM,
∴∠ACM=∠A=64°,
∴∠AMC=180°-∠ACM-∠A=52°.
∵将Rt△ABC绕点M旋转,使点A与点C重合得到△CED,
∴△ACM≌△CDM,
∴∠AMC=∠CMD=52°,
∴∠BMD=180°-∠AMC-∠CMD=76°.
故选A.
举一反三
 图是一个等腰直角三角形经过若干次旋转而生成的,则每次旋转的角度最小是   °.
题型:不详难度:| 查看答案
(本题8分)把两个直角边长均为6的等腰直角三角板ABCEFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFGO点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).

小题1:(1) 探究:在上述旋转过程中,BHCK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);
  小题2:(2) 利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.
题型:不详难度:| 查看答案
(本题10分)如右图,点A是△ABC和△ADE的公共顶点,∠BAC+∠DAE=180°,ABAEACAD,点MDE的中点,直线AM交直线BC于点N.将△ADE绕点A旋转,在旋转的过程中,请探究∠ANB与∠BAE的数量关系,并加以证明.
题型:不详难度:| 查看答案
下列旋转对称图形中,旋转角度为的是(   ).
A.等边三角形 B.正方形C.正五边形 D.正六边形

题型:不详难度:| 查看答案
下列说法不正确的的是(   ).
A.平移或旋转后的图形的形状大小不变
B.平移过程中对应线段平行(或在同一条直线上)且相等
C.旋转过程中,图形中的每一点都旋转了相同的路程
D.旋转过程中,对应点到旋转中心的距离相等

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.