(1)已知函数f(x)的周期为4,且等式f(2+x)=f(2-x)对一切x∈R恒成立,求证f(x)为偶函数;(2)设奇函数f(x)的定义域为R,且f(x+4)=

(1)已知函数f(x)的周期为4,且等式f(2+x)=f(2-x)对一切x∈R恒成立,求证f(x)为偶函数;(2)设奇函数f(x)的定义域为R,且f(x+4)=

题型:解答题难度:一般来源:不详
(1)已知函数f(x)的周期为4,且等式f(2+x)=f(2-x)对一切x∈R恒成立,求证f(x)为偶函数;
(2)设奇函数f(x)的定义域为R,且f(x+4)=f(x),当x∈[4,6]时,f(x)=2x+1,求f(x)在区间[-2,0]上的表达式.
答案
(1)证明:∵f(2+x)=f(2-x)
∴f(2+(x+2))=f(2-(x+2)),即f(x+4)=f(-x)
又∵函数f(x)的周期为4
∴f(x+4)=f(x)
∴f(-x)=f(x)
又∵x∈R,定义域关于原点对称
∴函数f(x)是偶函数
(2)当x∈[-2,0]时,-x∈[0,2]
∴-x+4∈[4,6]
又∵当x∈[4,6]时,f(x)=2x+1
∴f(-x+4)=2-x+4+1
又∵f(x+4)=f(x)
∴函数f(x)的周期为T=4
∴f(-x+4)=f(-x)
又∵函数f(x)是R上的奇函数
∴f(-x)=-f(x)
∴-f(x)=2-x+4+1
∴当x∈[-2,0]时,f(x)=-2-x+4-1
举一反三
已知函数f(x)=2sin2(
π
4
+x)-


3
cos2x

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若不等式f(x)-m<2在x∈[
π
4
π
2
]
上恒成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
设f(x)=
2x2
x+1
,g(x)=asin
πx
2
+5-2a(a>0),若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则a的取值范围是______.
题型:填空题难度:一般| 查看答案
对于函数f(x)=a-
2
2x+1
(a∈R)

(1)用函数单调性的定义证明f(x)在(-∞,+∞)上是增函数;
(2)是否存在实数a使函数f(x)为奇函数?
题型:解答题难度:一般| 查看答案
若定义域为[2a-1,a2+1]的函数f(x)=ax2+bx+2a-b是偶函数,则点(a,b)的轨迹是(  )
A.一个点B.两个点C.线段D.直线
题型:单选题难度:一般| 查看答案
已知函数f(x)=x3-2ax2-3x,x∈R.
(Ⅰ)当a=0时,求函数f(x)的单调区间;
(Ⅱ)当x∈(0,+∞)时,f(x)≥ax恒成立,求a的取值范围.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.