数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为(  )A.3690B.3660C.1845D.1830

数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为(  )A.3690B.3660C.1845D.1830

题型:不详难度:来源:
数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为(  )
A.3690B.3660C.1845D.1830

答案
D
解析
∵an+1+(-1)nan=2n-1,
∴当n=2k(k∈N*)时,a2k+1+a2k=4k-1①
当n=2k+1(k∈N)时,a2k+2-a2k+1=4k+1②
①+②得:a2k+a2k+2=8k.
则a2+a4+a6+a8+…+a60=(a2+a4)+(a6+a8)+…+(a58+a60)=8(1+3+…+29)=8×=1800.
由②得a2k+1=a2k+2-(4k+1),
所以a1+a3+a5+…+a59=a2+a4+…+a60-[4×(0+1+2+…+29)+30]=1800-(4×+30)=30,
∴a1+a2+…+a60=1800+30=1830.
举一反三
已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.
(1)求{an}的通项公式;
(2)求数列的前n项和.
题型:不详难度:| 查看答案
正项数列{an}满足-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an;
(2)令bn=,求数列{bn}的前n项和Tn.
题型:不详难度:| 查看答案
设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足++…+=1-,n∈N* ,求{bn}的前n项和Tn.
题型:不详难度:| 查看答案
等差数列{an}中,a7=4,a19=2a9.
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Sn.
题型:不详难度:| 查看答案
已知数列{an}的通项公式是an=,那么这个数列是(  )
A.递增数列B.递减数列
C.摆动数列D.常数列

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.