a2=a1+d a3=a1+2d a4=a1+3d 若a1、a2、a3成等比数列,则a22=a1•a3 (a1+d)2=a1(a1+2d) a12+2a1d+d2=a12+2a1d d2=0 d=0 与条件d≠0矛盾 若a1、a2、a4成等比数列,则a22=a1•a4 (a1+d)2=a1(a1+3d) a12+2a1d+d2=a12+3a1d d2=a1d ∵d≠0 ∴d=a1 则=1 若a1、a3、a4成等比数列,则a32=a1•a4 (a1+2d)2=a1(a1+3d) a12+4a1d+4d2=a12+3a1d 4d2=-a1d ∵d≠0 ∴4d=-a1 则=-4 若a2、a3、a4成等比数列,则a32=a2•a4 (a1+2d)2=(a1+d)(a1+3d) a12+4a1d+4d2=a12+4a1d+3d2 d2=0 d=0 与条件d≠0矛盾 综上所述:=1 或=-4 故答案为1或-4 |