等差数列{an}中,若al+a4+a7=39,a3+a6+a9=27,则前9项的和Sn等于______.
题型:不详难度:来源:
等差数列{an}中,若al+a4+a7=39,a3+a6+a9=27,则前9项的和Sn等于______. |
答案
∵在等差数列{an}中,a1+a4+a7=39,a3+a6+a9=27, ∴a4=13,a6=9, ∴a4+a6=22,又a1+a9=a4+a6=22 ∴数列{an}的前9项之和S9===99. 故答案为:99. |
举一反三
已知sn是等差数列{an}的前n项和,若s2≥4,s4≤16,则a5的最大值是______. |
在等差数列{an}中,a1=7,a10=-43,则s10=______. |
观察图:若第n行的各数之和等于20112,则n=( ) 1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 … |
在等差数列{an}中,|a3|=|a9|,公差d<0,则使前n项和Sn取得最大值时的自然数n 的值为( ) |
等差数列{an}的前n项和Sn满足S20=S40,下列结论中一定正确的是( )A.S30是Sn中的最大值 | B.S30是Sn中的最小值 | C.S30=0 | D.S60=0 |
|
最新试题
热门考点