(本小题满分13分)已知f(x)=mx(m为常数,m>0且m≠1).设f(a1),f(a2),…,f(an)…(n∈N)是首项为m2,公比为m的等比数列

(本小题满分13分)已知f(x)=mx(m为常数,m>0且m≠1).设f(a1),f(a2),…,f(an)…(n∈N)是首项为m2,公比为m的等比数列

题型:不详难度:来源:
(本小题满分13分)
已知f(x)=mx(m为常数,m>0且m≠1).
f(a1),f(a2),…,f(an)…(n∈N)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bn=an·f(an),且数列{bn}的前n项和为Sn,当m=2时,求Sn
(3)若cn=f(an)lgf(an),问是否存在m,使得数列{cn}中每一项恒小于它后面的项?若存在,
出m的范围;若不存在,请说明理由.
答案

解:(1)由题意f(an)=m2·mn+1,即man,=mn+1.
ann+1,(2分)      ∴an+1an=1,
∴数列{an}是以2为首项,1为公差的等差数列.(4分)
(2)由题意bnanf(an)=(n+1)·mn+1
m=2时,bn=(n+1)·2n+1
Sn=2·22+3·23+4·24+…+(n+1)·2n+1 ①(6分)
①式两端同乘以2,得
2Sn=2·23+3·24+4·25+…+n·2n+1+(n+1)·2n+2 ②
②-①并整理,得

解析

举一反三
.(本题满分12分)已知函数
(1)求的取值范围;
(2)若对任意成立;
(ⅰ)求证是等比数列;
(ⅱ)令,求证.
题型:不详难度:| 查看答案
(本小题满分12分,(1)小问6分,(2)小分6分.)
已知函数,数列满足.
(1)求证:
(2)求证:.
题型:不详难度:| 查看答案
12分)已知是数列的前项和,且对任意,有.记.其中为实数,且.
(1)当时,求数列的通项;
(2)当时,若对任意恒成立,求的取值范围.
题型:不详难度:| 查看答案
(本小题满分16分) [已知数列满足
,.
(1)求数列的通项公式
(2)若对每一个正整数,若将按从小到大的顺序排列后,此三项均能构成等
差数列, 且公差为.①求的值及对应的数列
②记为数列的前项和,问是否存在,使得对任意正整数恒成立?若存
在,求出的最大值;若不存在,请说明理由.
题型:不详难度:| 查看答案
设数列项和为,若.
(1)求数列的通项公式;
(2)若,数列项和为,证明:
(3)是否存在自然数,使?若存在,求出的值;若不存在,说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.