试题分析:(1)先求导函数,由导数的几何意义知,切线斜率为,利用直线的点斜式方程可求;(2)构造函数,只需证明函数的最小值大于等于0即可,先求导得,,因导数等于0的根不易求出,再求导得,,可判断,故递增,且,故在单调递减,在单调递增 ∴得证;(3)结合已知条件或已经得到的结论,得证明或判断的条件,是构造法求解问题的关键,由(2)知,依次将代数式放大,围绕目标从而证明不等式. 试题解析:(1),,则 ,∴图像在处的切线方程为即 3分 (2)令, 4分 则 ∵与同号 ∴ ∴ ∴ ∴在单调递增 6分 又,∴当时,;当时, ∴在单调递减,在单调递增 ∴ ∴ 即对任意的恒成立 8分 (3)由(2)知 9分 则 11分 由柯西不等式得 ∴ 13分 同理 三个不等式相加即得证。 14分 |