已知函数f(x)=x3-ax-b (a,b∈R)(1)当a=b=1时,求函数f(x)的单调区间(2)是否存在a,b,使得对任意的x∈[0,1]成立?若存在,求出

已知函数f(x)=x3-ax-b (a,b∈R)(1)当a=b=1时,求函数f(x)的单调区间(2)是否存在a,b,使得对任意的x∈[0,1]成立?若存在,求出

题型:不详难度:来源:
已知函数f(x)=x3-ax-b (a,b∈R)
(1)当a=b=1时,求函数f(x)的单调区间
(2)是否存在a,b,使得对任意的x∈[0,1]成立?若存在,求出a,b的值,若不存在,说明理由。
答案
(1)函数f(x)的单调递增区间为()和(),函数f(x)的单调递减区间为()   (2)存在a=1, 
解析
(1)f(x)=x3-x-1,=3x2-1=0,x=,x∈()或x∈()时>0,x∈()时<0,所以函数f(x)的单调递增区间为()和(),函数f(x)的单调递减区间为()…5分
(2)假设存在这样的a,b,使得对任意的x∈[0,1]成立,则
①,两式相加可得0<<3,所以函数f(x)在区间[)递减,在区间[]递增,所以②,由不等式组中的第二式加第三式可得,由不等式组中的第一式加第三式可得。             10分
,a=3,又为减函数,又,所以,所以,所以a=1,代入②式可得,所以存在a=1,,使得对任意的x∈[0,1]成立。       16分
举一反三
.已知函数(1)判定的单调性,并证明。
(2)设,若方程有实根,求的取值范围。
(3)求函数上的最大值和最小值。
题型:不详难度:| 查看答案
设函数
(Ⅰ)若,函数是否有极值,若有则求出极值,若没有,请说明理由.
(Ⅱ)若在其定义域内为单调函数,求实数p的取值范围.
题型:不详难度:| 查看答案
已知
   (1)当a=1时,试求函数的单调区间,并证明此时方程=0只有一个实数根,并求出此实数根;
(2)证明:
题型:不详难度:| 查看答案
已知函数
(1)若有极值,求b的取值范围;
(2)若处取得极值时,当恒成立,求c的取值范围;
(3)若处取得极值时,证明:对[-1,2]内的任意两个值都有
题型:不详难度:| 查看答案
已知函数是偶函数,当时.(a为实数).
(1)若处有极值,求a的值。(6分)
(2)若上是减函数,求a的取值范围。(8分)
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.