(本小题满分12分)已知函数 () , (Ⅰ)试确定的单调区间 , 并证明你的结论 ;(Ⅱ)若时 , 不等式恒成立 , 求实数的取值范围 .

(本小题满分12分)已知函数 () , (Ⅰ)试确定的单调区间 , 并证明你的结论 ;(Ⅱ)若时 , 不等式恒成立 , 求实数的取值范围 .

题型:不详难度:来源:
(本小题满分12分)已知函数 () , (Ⅰ)试确定的单调区间 , 并证明你的结论 ;(Ⅱ)若时 , 不等式恒成立 , 求实数的取值范围 .
答案
(Ⅱ)
解析
(Ⅰ) 当时 ,  ,
可得 ; 令可得 .
∴函数 ()在区间上是增函数; 在区间上是减函数 .
(Ⅱ) 由(Ⅰ)得,函数函数 ()在区间上是增函数 ,
∴当时,  .
∵不等式恒成立 , ∴ , 解之得
举一反三
(本题16分) 设函数,且,其中是自然对数的底数.(1)求的关系;(2)若在其定义域内为单调函数,求的取值范围;
(3)设,若在上至少存在一点,使得成立,求实数的取值范围.
题型:不详难度:| 查看答案
(14分)已知函数处取得极值。
(1)求实数的值;(2)若关于的方程上恰有两个不相等的实数根,求实数的取值范围;(3)证明:。参考数据:
题型:不详难度:| 查看答案
(本小题满分13分)已知函数时有极值,其图象在点处的切线与直线平行.(1)求的值和函数的单调区间;(2)若当时,恒有,试确定的取值范围.
题型:不详难度:| 查看答案
(本小题满分14分)已知函数在(0,+)上是增函数,在[–1,0]上是减函数,且方程有三个根,它们分别为α,–1,β
(1)求c的值;(2)求证:;(3)求|αβ|的取值范围.
题型:不详难度:| 查看答案
(本大题共15分)已知上是增函数,上是减函数.(1)求的值;(2)设函数上是增函数,且对于内的任意两个变量,恒有成立,求实数的取值范围;(3)设,求证:.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.