20、已知函数f(x)=lnx+ax(a∈R),g(x)=1x(1)求函数g(x)在x=1处的切线方程;(2)求f(x)的单调区间与极值;(3)若函数f(x)的

20、已知函数f(x)=lnx+ax(a∈R),g(x)=1x(1)求函数g(x)在x=1处的切线方程;(2)求f(x)的单调区间与极值;(3)若函数f(x)的

题型:不详难度:来源:
20、已知函数f(x)=
lnx+a
x
(a∈R),g(x)=
1
x

(1)求函数g(x)在x=1处的切线方程;
(2)求f(x)的单调区间与极值;
(3)若函数f(x)的图象与函数g(x)的图象在区间(0,e2]上有公共点,求实数a的取值范围.
答案
(1)∵g(x)=
1
x

∴g′(x)=-
1
x2

∴g′(1)=-1,又g(1)=1,
∴函数g(x)在x=1处的切线方程为y-1=-(x-1),即y=-x+2.
(2)f(x)的定义域为(0,+∞),f′(x)=
1-(lnx+a)
x2
,令f′(x)=0,得x=e1-a
当x∈(0,e1-a)时,f′(x)>0,f(x)在∈(0,e1-a]上是增函数;
当x∈(e1-a,+∞)时,f′(x)<0,f(x)在∈[e1-a,+∞)上是减函数;
∴函数f(x)的单调递增区间为(0,e1-a],单调递减区间为[e1-a,+∞),极大值为f(x)极大值=f(e1-a)=ea-1,无极小值.
(3)令F(x)=f(x)-g(x)=
lnx+a-1
x
,则F′(x)=
-lnx+2-a
x2

令F′(x)=0得x=e2-a;令F′(x)>0,得0<x<e2-a;令F′(x)<0,得x>e2-a
故函数F(x)在区间(0,e2-a]上是增函数,在区间[e2-a,+∞)上是减函数.
①当e2-a<e2,即a>0时,函数F(x)在区间(0,e2-a]上是增函数,在区间[e2-a,e2]上是减函数.
∴F(x)max=F(e2-a)=ea-2
又F(e1-a)=0,F(e2)=
a+1
e2
>0.
∴当0<x<e1-a时,F(x)<0;
当e1-a<x≤e2时,F(x)>0;
此时函数f(x)的图象与函数g(x)的图象在区间(0,e2]上有一个公共点.
②当e2-a≥e2,即a≤0时,函数F(x)在区间(0,e2]上是增函数,F(x)max=F(e2)=
a+1
e2

若F(x)max=F(e2)=
a+1
e2
≥0,即-1≤a≤0时,e1-a≤e2
∵F(e1-a)=0,所以函数f(x)的图象与函数g(x)的图象在区间(0,e2]上有一个公共点;
若F(x)max=F(e2)=
a+1
e2
<0,即a<-1时,函数f(x)的图象与函数g(x)的图象在区间(0,e2]上没有公共点.
综上,实数a的取值范围是[-1,+∞).
举一反三
已知函数f(x)=2ax-x3,a>0,若f(x)在x∈(0,1]上是增函数,求a的取值范围.
题型:不详难度:| 查看答案
求函数y=x+
1
x
的单调区间.
题型:不详难度:| 查看答案
设a∈R,函数f(x)=2x3-3(a+2)x2+12ax+4,
(1)若x=3是f(x)的一个极值点,求常数a的值;
(2)若f(x)在(-∞,1)上为增函数,求a的取值范围.
题型:西城区一模难度:| 查看答案
设f(x)=ln(x+1),(x>-1)
(1)讨论函数g(x)=af(x)-
1
2
x2
(a≥0)的单调性.
(2)求证:(1+
1
1
)(1+
1
2
)(1+
1
3
)…(1+
1
n
)<e
n+2
2
(n∈N*
题型:不详难度:| 查看答案
已知函数f(x)=x2+ax+blnx(x>0,实数a,b为常数).
(Ⅰ)若a=1,b=-1,求f(x)在x=1处的切线方程;
(Ⅱ)若a=-2-b,讨论函数f(x)的单调性.
题型:怀柔区一模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.