定义在D={x∈R|x≠0}上的函数f(x)满足两个条件:①对于任意x、y∈D,都有f(x)f(y)-f(xy)=x2+y2xy;②曲线y=f(x)存在与直线x

定义在D={x∈R|x≠0}上的函数f(x)满足两个条件:①对于任意x、y∈D,都有f(x)f(y)-f(xy)=x2+y2xy;②曲线y=f(x)存在与直线x

题型:不详难度:来源:
定义在D={x∈R|x≠0}上的函数f(x)满足两个条件:①对于任意x、y∈D,都有f(x)f(y)-f(xy)=
x2+y2
xy
;②曲线y=f(x)存在与直线x+y+1=0平行的切线.
(Ⅰ)求过点(-1,
1
4
)的曲线y=f(x)的切线的一般式方程;
(Ⅱ)当x∈(0,+∞),n∈N+时,求证:fn(x)-f(xn)≥2n-2.
答案
(Ⅰ)令x=y=1得,f2(1)-f(1)=2,解得f(1)=-1或f(1)=2.
当f(1)=-1时,令y=1得,f(x)=-
x2+1
2x
,即f(x)=-
1
2
(x+
1
x
),
f′(x)=-
1
2
(1-
1
x2
),
由f′(x)=-1得,x2=-1,此方程在D上无解,这说明曲线y=f(x)不存在与直线x+y+1=0平行的切线,不合题意,
则f(1)=2,此时,令y=1得,f(x)=
x2+1
x
=x+
1
x
,f′(x)=1-
1
x2

由f′(x)=-1得,x2=
1
2
,此方程在D上有解,符合题意.
设过点(-1,
1
4
)的切线切曲线y=f(x)于(x0,x0+
1
x0
),则切线的斜率为1-
1
x02

其方程为y-x0-
1
x0
=(1-
1
x02
)(x-x0),把点(-1,
1
4
)的坐标代入整理得,
5x02-8x0-4=0,解得x0=-
2
5
或x0=2,
把x0=-
2
5
或x0=2分别代入上述方程得所求的切线方程是:y=-
21
4
x-5和y=
3
4
x+1,
即21x+4y+20=0和3x-4y+4=0.
(Ⅱ)由(Ⅰ)知f(x)=x+
1
x
,当n∈N*时,
fn(x)-f(xn)=(x+
1
x
)
n
-(xn+
1
xn

=
C1n
xn-1
1
x
+
C2n
xn-2
1
x2
+…+
Cn-2n
x2
1
xn-2
+
Cn-1n
x•
1
xn-1

=
C1n
xn-2+
C2n
xn-4+…+
Cn-2n
1
xn-4
+
Cn-1n
1
xn-2

由x∈(0,+∞),n∈N*知,xn∈(0,+∞),那么
2(fn(x)-f(xn))=
C1n
xn-2+
C2n
xn-4+…+
Cn-2n
1
xn-4
+
Cn-1n
1
xn-2

+
Cn-1n
1
xn-2
+
Cn-2n
1
xn-4
+…+
C2n
xn-4+
C1n
xn-2
=
C1n
xn-2+
C2n
xn-4+…+
Cn-2n
1
xn-4
+
Cn-1n
1
xn-2

+
C1n
1
xn-2
+
C2n
1
xn-4
+…+
Cn-2n
xn-4+
Cn-1n
xn-2
=
C1n
(xn-2+
1
xn-2
)+
C2n
(xn-4+
1
xn-4
)+…+
Cn-1n
(xn-2+
1
xn-2

≥2
C1n
+2
C2n
+…+2
Cn-1n

=2(
C1n
+
C2n
+…+
Cn-1n

=2[(
C0n
+
C1n
+
C2n
+…+
Cn-1n
+
Cnn
)-
C0n
-
Cnn
)]
=2(2n-2)
所以fn(x)-f(xn)≥2n-2.
举一反三
曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是(  )
A.-9B.-3C.9D.15
题型:山东难度:| 查看答案
已知函数f(x)=
2
3
x(x2-3ax-
9
2
) (a∈R)
,若函数f(x)的图象上点P(1,m)处的切线方程为3x-y+b=0,则m的值为(  )
A.
1
3
B.
1
2
C.-
1
3
D.-
1
2
题型:不详难度:| 查看答案
已知曲线C1:y=
x2
e
+e(e为自然对数的底数),曲线C2:y=2elnx和直线m:y=2x.
(I)求证:直线m与曲线C1、C2都相切,且切于同一点;
(II)设直线x=t(t>0)与曲线C1、C2及直线m分别交于M、N、P,记f(t)=|MP|-|PN|,求f(t)在[e-3,e3]上的最大值.
题型:不详难度:| 查看答案
曲线y=-x2+1在点(1,0)处的切线方程为(  )
A.y=x-1B.y=-x+1C.y=2x-2D.y=-2x+2
题型:不详难度:| 查看答案
已知定义在R上的奇函数f(x)=x3+bx2+cx+d在x=±1处取得极值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)试证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4成立.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.