已知函数f(x)=xlnx.(Ⅰ)求函数f(x)的极值点;(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程;(Ⅲ)设函数g(x)=f(
题型:牡丹江一模难度:来源:
已知函数f(x)=xlnx. (Ⅰ)求函数f(x)的极值点; (Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程; (Ⅲ)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数) |
答案
举一反三
已知函数f(x)=x(x-a)(x-b),点A(s,f(s)),B(t,f(t)). (1)若a=0,b=3,函数f(x)在(t,t+3)上既能取到极大值,又能取到极小值,求t的取值范围; (2)当a=0时,+lnx+1≥0对任意的x∈[,+∞)恒成立,求b的取值范围; (3)若0<a<b,函数f(x)在x=s和x=t处取得极值,且a+b<2,O是坐标原点,证明:直线OA与直线OB不可能垂直. |
已知函数y=f(x)在点(2,f(2))处的切线为由y=2x-1,则函数g(x)=x2+f(x)在点(2,g(2))处的切线方程为______. |
已知函数 f(x)的导数.f′(x)=3x2-3ax,f(0)=b,a,b为实数,1<a<2. (1) 若f(x)在区间_[-1,1]_上的最小值、最大值分别为-2、1,求a,b的值; (2) 在(1)的条件下,求曲线在点P(2,1)处的切线方程. |
曲线y=-在点(,-2)处的切线斜率为______,切线方程为______. |
已知曲线y=x3+,则曲线在x=2处的切线方程是______. |
最新试题
热门考点