已知函数f(x)=13x3+ax2-bx(a,b∈R),若y=f(x)图象上的点(1,113)处的切线斜率为-4,求y=f(x)在区间[-3,6]上的最值.

已知函数f(x)=13x3+ax2-bx(a,b∈R),若y=f(x)图象上的点(1,113)处的切线斜率为-4,求y=f(x)在区间[-3,6]上的最值.

题型:不详难度:来源:
已知函数f(x)=
1
3
x3+ax2-bx
(a,b∈R),若y=f(x)图象上的点(1,
11
3
)处的切线斜率为-4,求y=f(x)在区间[-3,6]上的最值.
答案
求导函数,f′(x)=x2+2ax-b,
∵y=f(x)图象上的点(1,-
11
3
)处的切线斜率为-4,
∴f′(1)=-4
∴1+2a-b=-4①
∵f(1)=-
11
3
,∴
1
3
+a-b=-
11
3

由①②解得a=-1,b=3,…(6分)
∴f(x)=
1
3
x3-x2-3x
,f′(x)=(x-3)(x+1)…(5分)
∴f′(x)=(x-3)(x+1)=0,解得x=-1或3.
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

x(-3,-1)-1(-1,3)3(3,+6)
f′(x)+0-0+
f(x)极大值极小值
已知函数f(x)=x3-3x2+2,若x∈[-2,3],则函数的值域为______.
设函数f(x)=exsinx
(1)求函数f(x)的单调递减区间;
(2)当x∈[0,π]时,求函数f(x)的最大值和最小值.
已知一块半径为r的残缺的半圆形材料ABC,O为半圆的圆心,OC=
1
2
r
,残缺部分位于过点C的竖直线的右侧.现要在这块材料上截出一个直角三角形,有两种设计方案:如图甲,以BC为斜边;如图乙,直角顶点E在线段OC上,且另一个顶点D在
AB
上.要使截出的直角三角形的面积最大,应该选择哪一种方案?请说明理由,并求出截得直角三角形面积的最大值.
已知直线y=kx+1与曲线y=lnx有公共点,则实数k的取值范围是______.
已知f(x)=ax3+bx+c图象过点(0,-
1
3
)
,且在x=1处的切线方程是y=-3x-1.
(1)求y=f(x)的解析式;
(2)求y=f(x)在区间[-3,3]上的最大值和最小值.