已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的个数.(Ⅰ)设集合P=2,4

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的个数.(Ⅰ)设集合P=2,4

题型:怀柔区一模难度:来源:
已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的个数.
(Ⅰ)设集合P=2,4,6,8,Q=2,4,8,16,分别求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n,求证:l(A)=
n(n-1)
2

(Ⅲ)l(A)是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由?
答案
(Ⅰ)根据题中的定义可知:由2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,得l(P)=5.
由2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,得l(Q)=6.(5分)
(Ⅱ)证明:因为ai+aj(1≤i<j≤n)最多有
C2n
=
n(n-1)
2
个值,所以l(A)≤
n(n-1)
2

又集合A=2,4,8,,2n,任取ai+aj,ak+al(1≤i<j≤n,1≤k<l≤n),
当j≠l时,不妨设j<l,则ai+aj<2aj=2j+1≤al<ak+al
即ai+aj≠ak+al.当j=l,i≠k时,ai+aj≠ak+al
因此,当且仅当i=k,j=l时,ai+aj=ak+al
即所有ai+aj(1≤i<j≤n)的值两两不同,
所以l(A)=
n(n-1)
2
.(9分)
(Ⅲ)l(A)存在最小值,且最小值为2n-3.
不妨设a1<a2<a3<…<an,可得a1+a2<a1+a3<…<a1+an<a2+an<…<an-1+an
所以ai+aj(1≤i<j≤n)中至少有2n-3个不同的数,即l(A)≥2n-3.
事实上,设a1,a2,a3,,an成等差数列,
考虑ai+aj(1≤i<j≤n),根据等差数列的性质,
当i+j≤n时,ai+aj=a1+ai+j-1
当i+j>n时,ai+aj=ai+j-n+an
因此每个和ai+aj(1≤i<j≤n)等于a1+ak(2≤k≤n)中的一个,
或者等于al+an(2≤l≤n-1)中的一个.
所以对这样的A,l(A)=2n-3,所以l(A)的最小值为2n-3.(13分)
举一反三
从颜色不同的5个球中任取4个球放入3个不同的盒子中,要求每个盒子不空,则不同的放法总数为(  )
A.120B.90C.180D.360
题型:不详难度:| 查看答案
已知数列{an}共有6项,若其中三项是1,两项是2,一项是3,则满足上述条件的数列共有______个.
题型:卢湾区一模难度:| 查看答案
从5男4女中选4位代表,其中至少有2位男生,且至少有1位女生,分别到四个不同的工厂调查,不同的分派方法有(  )
A.100种B.400种C.480种D.2400种
题型:汕头一模难度:| 查看答案
一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是(  )
A.40B.74C.84D.200
题型:锦州二模难度:| 查看答案
某商店要求甲、乙、丙、丁、戊五种不同的商品在货架上排成一排,其中甲、乙两种必须排在一起,而丙、丁两种不能排在一起,不同的排法共有 ______种.
题型:崇文区一模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.