在直三棱柱中,∠ACB=90°,M是 的中点,N是的中点。(1)求证:MN∥平面 ;(2)求点到平面BMC的距离;(3)求二面角­1的大小。

在直三棱柱中,∠ACB=90°,M是 的中点,N是的中点。(1)求证:MN∥平面 ;(2)求点到平面BMC的距离;(3)求二面角­1的大小。

题型:不详难度:来源:
在直三棱柱中,ACB=90°, 的中点,的中点。
(1)求证:MN∥平面 ;
(2)求点到平面BMC的距离;
(3)求二面角­1的大小。
答案
(1)见解析   (2)    (3)-arctan
解析
(1)如图所示,取B1C1中点D,连结NDA1D
DNBB1AA1
DN
∴四边形A1MND为平行四边形。
MNA1 MN 平面A1B1C1  AD1平面A1B1C1
MN∥平面--------------------------4分
(2)因三棱柱为直三棱柱,∴C1 CBC,又∠ACB=90°
BC⊥平面A1MC1
在平面ACC1 A1中,过C1C1HCM,又BCC1H,故C1HC1点到
平面BMC的距离。
在等腰三角形CMC1中,C1 C=2,CM=C1M=
.--------------------------8分
(3)在平面ACC1A1上作CE⊥C1M交C1M于点E,A1C1于点F,则CE为BE在
平面ACC1A1上的射影,
∴BE⊥C1M, ∴∠BEF为二面角B-C1M-A的平面角,
在等腰三角形CMC1中,CE=C1H=,∴tan∠BEC=
∴∠BEC=arctan,∴∠BEF=-arctan
即二面角的大小为-arctan。--------------12分
举一反三
已知菱形中,,沿对角线折起,使二面角,则点所在平面的距离等于           
题型:不详难度:| 查看答案
(本小题满分12分)
(注意:在试题卷上作答无效)
四棱锥中,底面为矩形,侧面底面
(Ⅰ)证明:
(Ⅱ)设侧面为等边三角形,求二面角的大小。
题型:不详难度:| 查看答案
在如图所示的多面体中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF∥AC,AB=,EF=EC=1,
⑴求证:平面BEF⊥平面DEF;
⑵求二面角A-BF-E的大小。
题型:不详难度:| 查看答案
如图所示,四棱锥的底面为直角梯形,底面的中点.
(Ⅰ)求证:平面平面
(Ⅱ)求直线与平面所成的角;
(Ⅲ)求点到平面的距离.
题型:不详难度:| 查看答案
在棱长AB=AD=2,AA1=3的长方体AC1中,点E是平面BCC1B1上动点,点F是CD的中点.
(Ⅰ)试确定E的位置,使D1E⊥平面AB1F;
(Ⅱ)求二面角B1—AF—B的大小.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.