证明:(Ⅰ)取CE中点P,连接FP、BP, ∵F为CD的中点, ∴FP∥DE,且FP=DE. 又AB∥DE,且AB=DE. ∴AB∥FP,且AB=FP, ∴ABPF为平行四边形,∴AF∥BP.(4分) 又∵AF⊄平面BCE,BP⊂平面BCE, ∴AF∥平面BCE(6分)
(Ⅱ)∵△ACD为正三角形,∴AF⊥CD ∵AB⊥平面ACD,DE∥AB ∴DE⊥平面ACD又AF⊂平面ACD ∴DE⊥AF 又AF⊥CD,CD∩DE=D ∴AF⊥平面CDE(10分) 又BP∥AF∴BP⊥平面CDE 又∵BP⊂平面BCE ∴平面BCE⊥平面CDE(12分) |