(1)证明: ∵A1C1=B1C1,D1是A1B1的中点, ∴C1D1⊥A1B1于D1, 又∵平面A1ABB1⊥平面A1B1C1, ∴C1D1⊥平面A1B1BA, 而AB1平面A1ABB1,∴AB1⊥C1D1 (2)证明:连结D1D, ∵D是AB中点,∴DD1CC1,∴C1D1∥CD, 由(1)得CD⊥AB1,又∵C1D1⊥平面A1ABB1,C1B⊥AB1, 由三垂线定理得BD1⊥AB1, 又∵A1D∥D1B,∴AB1⊥A1D而CD∩A1D=D,∴AB1⊥平面A1CD (3)解 由(2)AB1⊥平面A1CD于O, 连结CO1得∠ACO为直线AC与平面A1CD所成的角, ∵AB1=3,AC=A1C1=2,∴AO=1,∴sinOCA=, ∴∠OCA=. |