(本小题14分)如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD(1)证明:AB;         (2)求面VAD与面VDB

(本小题14分)如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD(1)证明:AB;         (2)求面VAD与面VDB

题型:不详难度:来源:
(本小题14分)
如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD

(1)证明:AB;         
(2)求面VAD与面VDB所成的二面角的余弦值。
答案
本题14分)
方法一:(用传统方法)(1)证明:平面VAD平面ABCD,ABAD,AB平面ABCD,
面VADABCD=AD,面VAD
(2) 取VD中点E,连接AE,BE,是正三角形,
面VAD, AE, ABVD,ABAE
 ABVD, ABAE=A,且AB,AE平面ABE, VD平面ABE,
,BEVD,是所求的二面角的平面角。
在RT中,,
方法二:(空间向量法)以D为坐标原点,建立空间直角坐标系如图
(1)证明:不妨设A(1,0,0),  B(1,1,0), ,,,
因此AB与平面VAD内两条相交直线VA,AD都垂直,面VAD
(2)取VD的中点E,则,
,由=0,得,因此是所求二面角的平面角。
解析

举一反三
(本小题15分)
如图在三棱锥P-ABC中,PA 分别在棱

(1)求证:BC
(2)当D为PB中点时,求AD与平面PAC所成的角的余弦值;
(3)是否存在点E,使得二面角A-DE-P为直二面角,并说明理由。
题型:不详难度:| 查看答案
(本小题满分14分)
如图a,在直角梯形中,的中点,上,且。已知,沿线段把四边形折起如图b,使平面⊥平面

(1)求证:⊥平面
(2)求三棱锥体积.
题型:不详难度:| 查看答案
(本小题满分12分)
如题19图,平行六面体的下底面是边长为的正方形,,且点在下底面上的射影恰为点.

(Ⅰ)证明:
(Ⅱ)求二面角的大小.
题型:不详难度:| 查看答案
.在棱长为a的正方体ABCD—A1B1C1D1中,M是AA1的中点,则点A到平面MBD的距离是
A.aB.aC.aD. a

题型:不详难度:| 查看答案
如图所示,在三棱锥C—ABD中,E、F分别是AC和BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成的角是          .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.