如图,过点的两直线与抛物线相切于A、B两点, AD、BC垂直于直线,垂足分别为D、C.(1)若,求矩形ABCD面积;(2)若,求矩形ABCD面积的最大值.

如图,过点的两直线与抛物线相切于A、B两点, AD、BC垂直于直线,垂足分别为D、C.(1)若,求矩形ABCD面积;(2)若,求矩形ABCD面积的最大值.

题型:不详难度:来源:
如图,过点的两直线与抛物线相切于A、B两点, AD、BC垂直于直线,垂足分别为D、C.

(1)若,求矩形ABCD面积;
(2)若,求矩形ABCD面积的最大值.
答案
(1)14  (2)
解析

试题分析:(1)当=1时,假设切线为y=kx+1,联立.令判别式为零可求得k及切点坐标.即可求出面积.(2)假设切点,对抛物线求导求出斜率写出切线方程,代入定点(0, )求出切点坐标(含).写出面积的表达式.根据的范围求出S的最大值.本题是常见的直线与抛物线的关系的题型.设切点,联立方程找出关于切点的等式.通过对参数的分类求出相应的最大值.
试题解析:(1)时, (详细过程见第(2)问)        6分
(2)设切点为,则,
因为,所以切线方程为, 即
因为切线过点,所以,即,于是
代入
(若设切线方程为,代入抛物线方程后由得到切点坐标,亦予认可.)
所以, 所以矩形面积为

所以当时,;当时,
故当时,S有最大值为.             15分
举一反三
已知椭圆的左右两焦点分别为是椭圆上一点,且在轴上方,

(1)求椭圆的离心率的取值范围;
(2)当取最大值时,过的圆的截轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线上任一点引圆的两条切线,切点分别为.试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.
题型:不详难度:| 查看答案
已知分别是椭圆的左、右焦点,右焦点到上顶点的距离为2,若.
(Ⅰ)求此椭圆的方程;
(Ⅱ)点是椭圆的右顶点,直线与椭圆交于两点(在第一象限内),又是此椭圆上两点,并且满足,求证:向量共线.
题型:不详难度:| 查看答案
已知分别是椭圆的左、右焦点,右焦点到上顶点的距离为2,若
(Ⅰ)求此椭圆的方程;
(Ⅱ)直线与椭圆交于两点,若弦的中点为,求直线的方程.
题型:不详难度:| 查看答案
分别为双曲线的左、右焦点,为双曲线的左顶点,以为直径的圆交双曲线某条渐过线两点,且满足,则该双曲线的离心率为(    )
A.B.C.D.

题型:不详难度:| 查看答案
已知椭圆的离心率为,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)抛物线与椭圆有公共焦点,设轴交于点,不同的两点 上(不重合),且满足,求的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.