(本题满分12分)已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线的距离为,离心率(Ⅰ)求椭圆C的方程;(Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线:

(本题满分12分)已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线的距离为,离心率(Ⅰ)求椭圆C的方程;(Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线:

题型:不详难度:来源:
(本题满分12分)
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线的距离为,离心率
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线,是否存在实数m,使直线与(Ⅰ)中的椭圆有两个不同的交点M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,请说明理由。
答案
(1) (2) m=2
解析

试题分析:解(Ⅰ)
(Ⅱ)过A且垂直的直线为,若存在m使∣AM∣=∣AN∣,则应为线段MN的垂直平分线,即MN的中点应在直线上,
联立  ①
MN中点坐标为,带入∴m=2  将m=2代入①中得,所以不存在m使∣AM∣=∣AN∣
点评:解决该试题的关键是利用性质得到a,b,c的关系式,同时能结合联立方程组,韦达定理来得到参数m的值,属于基础题。
举一反三
已知抛物线上有一条长为2的动弦AB,则AB中点M到x轴的最短距离为    
题型:不详难度:| 查看答案
(本小题满分12分)
已知椭圆左、右焦点分别为F1、F2,点,点F2在线段PF1的中垂线上。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的倾斜角互补,求证:直线过定点,并求该定点的坐标。
题型:不详难度:| 查看答案
双曲线2x2y2=8的实轴长是(  )
A.2B.2
C.4D.4

题型:不详难度:| 查看答案
椭圆上有n个不同的点:P1,P2, ,Pn,椭圆的右焦点为F,数列{|PnF|}是公差大于的等差数列,则n的最大值是 ( )
A.198B.199
C.200D.201

题型:不详难度:| 查看答案
(本小题13分)已知椭圆,椭圆的长轴为短轴,且与有相同的离心率.
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆上,,求直线的方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.