甲乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环内,且每次射击成绩互不影响,射击环数的频率分布条形图如下图所示,若将频率视为概率,回答下列

甲乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环内,且每次射击成绩互不影响,射击环数的频率分布条形图如下图所示,若将频率视为概率,回答下列

题型:不详难度:来源:

甲乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环内,且每次射击成绩互不影响,射击环数的频率分布条形图如下图所示,若将频率视为概率,回答下列问题.
(Ⅰ)求甲运动员在一次射击中击中9环以上(含9环)的概率;
(Ⅱ)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率;
(Ⅲ)若甲、乙两运动员各射击1次,ξ表示这2次射击中击中9环以上(含9环)的次数,求ξ的分布列及Eξ.
答案
(Ⅰ)由图形可知,一次射击中甲击中7,8环的概率均为0.1,击中9环的概率为0.45,
又因为他们击中的环数都稳定在7,8,9,10环内,因此击中10环的概率为1-0.45-0.1-0.1=0.35,所以甲击中9环以上(含9环)的概率为0.45+0.35=0.8(或解P=1-0.2=0.8)…(3分)
(Ⅱ)设甲运动员在3次射击中至少有1次击中9环以上(含9环)为事件A
则P(A)=C310.8×0.22+C320.82×0.2+C330.83=0.096+0.384+0.512=0.992(或解P(A)=1-0.23=0.992)…(8分)
(Ⅲ)由题意可知ξ=0,1,2,由图可知乙一次射击击中9环以上(含9环)的概率为0.75P(ξ=0)=0.20×0.25=0.05,P(ξ=1)=0.80×0.25+0.75×0.20=0.35P(ξ=2)=0.80×0.75=0.60…(11分)
因此ξ的分布列为:
举一反三
ξ012
P(ξ)0.050.350.60
已知随机变量X的分布列如表,随机变量X的均值E(X)=1,则x的值为(  )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

X012
P0.4xy
袋中有大小相同的三个球,编号分别为1、2和3,从袋中每次取出一个球,若取到的球的编号为偶数,则把该球编号加1(如:取到球的编号为2,改为3)后放回袋中继续取球;若取到球的编号为奇数,则取球停止,用X表示所有被取球的编号之和.
(Ⅰ)求X的概率分布;
(Ⅱ)求X的数学期望与方差.
已知随机变量ξ~B(2,p),η~B(4,p),若Eξ=
3
4
,则Dη
=______.
小王有一天收到6位好友分别发来的1,2,2,3,3,4条短信,当天他从这6位好友中任取3位的短信阅读,并且只阅读已选取的好友的全部短信.
(1)求小王当天阅读的短信条数ξ的所有可能取值;
(2)求ξ的数学期望.
某地区试行中考考试改革,在九年级学年中举行4次统一测试,学生如果通过其中2次测试即可获得足够学分升入高中继续学习,不再参加其余的测试,而每个学生最多也只能参加4次测试,假设某学生每次通过测试的概率都是
1
3
,每次测试时间间隔恰当,每次测试通过与否互相独立.
(Ⅰ)求该学生在前两次测试中至少有一次通过的概率;
(Ⅱ)假定该生通过其中2次测试,则结束测试,否则继续测试直至判定他能否升入高中继续学习时停止,且最多参加完4次测试,记该生参加测试的次数为X,求X的分布列及X的数学期望.