如图,已知P为矩形ABCD所在平面外一点,PA⊥平面ABCD,E、F分别是AB、PC的中点, (Ⅰ)求证:EF∥平面PAD;  (Ⅱ)求证:EF⊥CD;  (Ⅲ

如图,已知P为矩形ABCD所在平面外一点,PA⊥平面ABCD,E、F分别是AB、PC的中点, (Ⅰ)求证:EF∥平面PAD;  (Ⅱ)求证:EF⊥CD;  (Ⅲ

题型:北京期末题难度:来源:
如图,已知P为矩形ABCD所在平面外一点,PA⊥平面ABCD,E、F分别是AB、PC的中点, 
(Ⅰ)求证:EF∥平面PAD;  
(Ⅱ)求证:EF⊥CD;  
(Ⅲ)若∠PDA=45°,求EF与平面ABCD所成的角的大小。

答案
解:如图,建立空间直角坐标系A-xyz,
设AB=2a,BC=2b,PA=2c,
则A(0,0,0),B(2a,0,0),C(2a,2b,0),
D(0,2b,0),P(0,0,2c),
∵E为AB的中点,F为PC的中点,
∴E(a,0,0),F(a,b,c),
(Ⅰ)∵=(0,b,c),=(0,0,2c),
=(0,2b,0),

共面,
又∵平面PAD,
∴EF∥平面PAD。
(Ⅱ)∵=(-2a,0,0),
=(-2a,0,0)·(0,b,c)=0,
∴EF⊥CD;
(Ⅲ)若∠PDA=45°,则有2b=2c,即b=c,
=(0,b,b),=(0,0,2b),

=45°,
∵AP⊥平面ABCD,
是平面ABCD的法向量,
∴EF与平面ABCD所成的角为
90°-=45°。
举一反三
如图,正方体ABCD-A1B1C1D1的棱长为1,
(1)求直线BC1和B1D1所成角的大小;
(2)求直线BC1和平面B1D1DB所成角的大小。

题型:北京期末题难度:| 查看答案
将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=
(Ⅰ)求证:DE⊥AC;
(Ⅱ)求DE与平面BEC所成角的正弦值;
(Ⅲ)直线BE上是否存在一点M,使得CM∥平面ADE,若存在,求点M的位置,若不存在,请说明理由。

题型:0111 期中题难度:| 查看答案
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥ABCD,PA=AD=4,AB=2,M为PD的中点,求直线PC与平面ABM所成的角的正弦值。

题型:0127 期中题难度:| 查看答案
如图,正方体ABCD-A′B′C′D′棱长为1,E是BB′的中点,F是B′C′的中点,
(1)求证:D′F∥平面A′DE;
(2)求二面角A-DE-A′的余弦值。

题型:0108 期中题难度:| 查看答案
如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点,
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求证:OE∥平面PDC;
(Ⅲ)求直线CB与平面PDC所成角的正弦值。

题型:山西省月考题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.