(2013•浙江)已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,

(2013•浙江)已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,

题型:不详难度:来源:
(2013•浙江)已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.
答案
(1)y=(3a﹣3)x﹣3a+4
(2)|f(x)|max=
解析
(1)因为f(x)=x3﹣3x2+3ax﹣3a+3,所以f′(x)=3x2﹣6x+3a,
故f′(1)=3a﹣3,又f(1)=1,所以所求的切线方程为y=(3a﹣3)x﹣3a+4;
(2)由于f′(x)=3(x﹣1)2+3(a﹣1),0≤x≤2.
故当a≤0时,有f′(x)≤0,此时f(x)在[0,2]上单调递减,故
|f(x)|max=max{|f(0)|,|f(2)|}=3﹣3a.
当a≥1时,有f′(x)≥0,此时f(x)在[0,2]上单调递增,故
|f(x)|max=max{|f(0)|,|f(2)|}=3a﹣1.
当0<a<1时,由3(x﹣1)2+3(a﹣1)=0,得
所以,当x∈(0,x1)时,f′(x)>0,函数f(x)单调递增;
当x∈(x1,x2)时,f′(x)<0,函数f(x)单调递减;
当x∈(x2,2)时,f′(x)>0,函数f(x)单调递增.
所以函数f(x)的极大值,极小值
故f(x1)+f(x2)=2>0,
从而f(x1)>|f(x2)|.
所以|f(x)|max=max{f(0),|f(2)|,f(x1)}.
当0<a<时,f(0)>|f(2)|.
=

时,|f(2)|=f(2),且f(2)≥f(0).
=
所以当时,f(x1)>|f(2)|.

时,f(x1)≤|f(2)|.
故f(x)max=|f(2)|=3a﹣1.
综上所述|f(x)|max=
举一反三
(2013•湖北)已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是(  )
A.(﹣∞,0)B.(0,C.(0,1)D.(0,+∞)

题型:不详难度:| 查看答案
设a>0,b>0,已知函数f(x)=
(1)当a≠b时,讨论函数f(x)的单调性;
(2)当x>0时,称f(x)为a、b关于x的加权平均数.
(1)判断f(1),f(),f()是否成等比数列,并证明f()≤f();
(2)a、b的几何平均数记为G.称为a、b的调和平均数,记为H.若H≤f(x)≤G,求x的取值范围.
题型:不详难度:| 查看答案
设函数.为常数且
(1)当时,求
(2)若满足,但,则称的二阶周期点.证明函数有且仅有两个二阶周期点,并求二阶周期点
(3)对于(2)中的,设,记的面积为,求在区间上的最大值和最小值。
题型:不详难度:| 查看答案
设[x]表示不大于x的最大整数, 则对任意实数x, y, 有
A.[-x]=-[x]
B.[x + ]=[x]
C.[2x]=2[x]
D.

题型:不详难度:| 查看答案
(2013•浙江)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则(  )
A.a>0,4a+b=0B.a<0,4a+b=0
C.a>0,2a+b=0D.a<0,2a+b=0

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.