如图,已知直线y=x+8交x轴于A点,交y轴于B点,过A、0两点的抛物线y=ax2+bx(a<O)的顶点C在直线AB上,以C为圆心,CA的长为半径作⊙C.(1)

如图,已知直线y=x+8交x轴于A点,交y轴于B点,过A、0两点的抛物线y=ax2+bx(a<O)的顶点C在直线AB上,以C为圆心,CA的长为半径作⊙C.(1)

题型:不详难度:来源:
如图,已知直线y=x+8交x轴于A点,交y轴于B点,过A、0两点的抛物线y=ax2+bx(a<O)的顶点C在直线AB上,以C为圆心,CA的长为半径作⊙C.
(1)求抛物线的对称轴、顶点坐标及解析式;
(2)将⊙C沿x轴翻折后,得到⊙C′,求证:直线AC是⊙C′的切线;
(3)若M点是⊙C的优弧
ABO
(不与0、A重合)上的一个动点,P是抛物线上的点,且∠POA=∠AM0,求满足条件的P点的坐标.
答案
(1)如图,由直线y=x+8图象上点的坐标特征可知,A(-8,0),B(0,8)
∵抛物线过A、O两点
∴抛物线的对称点为x=-4
又∵抛物线的对称点在直线AB上,
∴当x=-4时,y=4
∴抛物线的顶点C(-4,4)





4=16a-4b
0=64a-8b

解得





a=-
1
4
b=-2

∴抛物线的解析式为y=-
1
4
x2-2x;

(2)连接CC′、C′A
∵C、C′关于x轴对称,设CC′交x轴于D,则CD⊥x轴,且CD=4,AD=4
△ACD为等腰直角三角形
∴△AC′D也为等腰直角三角形
∴∠CAC′=90°
∵AC过⊙C′的半径C′A的外端点A
∴AC是⊙C′的切线;

(3)∵M点是⊙O的优弧
ABO
上的一点,
∴∠AMO=∠ABO=45°,
∴∠POA=∠AMO=45°
当P点在x轴上方的抛物线上时,
设P(x,y),则y=-x,
又∵y=-
1
4
x2-2x





y=-x
y=-
1
4
x2-2x

解得





x1=0
y1=0





x2=-4
y2=4

此时P点坐标为(-4,4)当P点在x轴下方的抛物线时,设P(x,y)
则y=x,又∵y=-
1
4
x2
-2x





y=x
y=-
1
4
x2-2x

解得





x1=0
y1=0





x2=-12
y2=-12

此时P点的坐标为(-12,-12)
综上所述,满足条件的P点坐标为(-4,4)或(-12,-12)
举一反三
已知:m是非负数,抛物线y=x2-2(m+1)x-(m+3)的顶点Q在直线y=-2x-2上,且和x轴交于点A、B(点A在点B的左侧).
(1)求A、B、Q三点的坐标.
(2)如果点P的坐标为(1,1).求证:PA和直线y=-2x-2垂直.
(3)点M(x,1)在抛物线上,判断∠AMB和∠BAQ的大小关系,并说明理由.
题型:不详难度:| 查看答案
如图,一位运动员在距篮下4.5米处跳起投篮,篮球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最高度3.5米,篮筐中心到地面距离为3.05米,建立坐标系如图.该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,他跳离地面的高度为0.2米,问这次投篮是否命中,为什么?若不命中,他应向前(或向后)移动几米才能使球准确命中?
题型:不详难度:| 查看答案
已知抛物线的函数关系式为:y=x2+2(a-1)x+a2-2a(a<0),
(1)若点P(-1,8)在此抛物线上.
①求a的值;
②设抛物线的顶点为A,与y轴的交点为B,O为坐标原点,∠ABO=α,求sinα的值;
(2)设此抛物线与x轴交于点C(x1,0)、D(x2,0),x1,x2满足a(x1+x2)+2x1x2<3,且抛物线的对称轴在直线x=2的右侧,求a的取值范围.
题型:不详难度:| 查看答案
用“♥”定义一种新运算:对于任意实数m,n和抛物线y=-ax2,当y=ax2♥(m,n)后都可以得到y=a(x-m)2+n.例如:当y=2x2♥(3,4)后都可以得到y=2(x-3)2+4.若函数y=x2♥(1,n)得到的函数如图所示,则n=______.
题型:不详难度:| 查看答案
取一张矩形的纸进行折叠,具体操作过程如下:
第一步:先把矩形ABCD对折,折痕为MN,如图(1)所示;
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B′,得Rt△AB′E,如图(2)所示;
第三步:沿EB′线折叠得折痕EF,如图(3)所示;利用展开图(4)所示.

探究:
(1)△AEF是什么三角形?证明你的结论.
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
(3)如图(5),将矩形纸片ABCD沿EF折叠,使点A落在DC边上的点A′处,x轴垂直平分DA,直线EF的表达式为y=kx-k (k<0)
①问:EF与抛物线y=-
1
8
x2
有几个公共点?
②当EF与抛物线只有一个公共点时,设A′(x,y),求
x
y
的值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.