(1)如图,由直线y=x+8图象上点的坐标特征可知,A(-8,0),B(0,8) ∵抛物线过A、O两点 ∴抛物线的对称点为x=-4 又∵抛物线的对称点在直线AB上, ∴当x=-4时,y=4 ∴抛物线的顶点C(-4,4) , 解得 ∴抛物线的解析式为y=-x2-2x;
(2)连接CC′、C′A ∵C、C′关于x轴对称,设CC′交x轴于D,则CD⊥x轴,且CD=4,AD=4 △ACD为等腰直角三角形 ∴△AC′D也为等腰直角三角形 ∴∠CAC′=90° ∵AC过⊙C′的半径C′A的外端点A ∴AC是⊙C′的切线;
(3)∵M点是⊙O的优弧 | ABO | 上的一点, ∴∠AMO=∠ABO=45°, ∴∠POA=∠AMO=45° 当P点在x轴上方的抛物线上时, 设P(x,y),则y=-x, 又∵y=-x2-2x ∴ 解得 此时P点坐标为(-4,4)当P点在x轴下方的抛物线时,设P(x,y) 则y=x,又∵y=-x2-2x ∴ 解得 此时P点的坐标为(-12,-12) 综上所述,满足条件的P点坐标为(-4,4)或(-12,-12)
|