如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;(2)设抛物线的对称轴

如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;(2)设抛物线的对称轴

题型:不详难度:来源:
如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;
(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;
(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.
答案
(1)依题意,设抛物线的解析式为 y=a(x-2)2-1,代入C(O,3)后,得:
a(0-2)2-1=3,a=1
∴抛物线的解析式:y=(x-2)2-1=x2-4x+3.

(2)由(1)知,A(1,0)、B(3,0);
设直线BC的解析式为:y=kx+3,代入点B的坐标后,得:
3k+3=0,k=-1
∴直线BC:y=-x+3;
由(1)知:抛物线的对称轴:x=2,则 D(2,1);
∴AD=


AG2+DG2
=


2
,AC=


OC2+OA2
=


10
,CD=


(3-1)2+22
=2


2

即:AC2=AD2+CD2,△ACD是直角三角形,且AD⊥CD;
∴S△ACD=
1
2
AD•CD=
1
2
×


2
×2


2
=2.

(3)由题意知:EFy轴,则∠FED=∠OCB,若△OCB与△FED相似,则有:
①∠DFE=90°,即 DFx轴;
将点D纵坐标代入抛物线的解析式中,得:
x2-4x+3=1,解得 x=2±


2

当x=2+


2
时,y=-x+3=1-


2

当x=2-


2
时,y=-x+3=1+


2

∴E1(2+


2
,1-


2
)、E2(2-


2
,1+


2
).
②∠EDF=90°;
易知,直线AD:y=x-1,联立抛物线的解析式有:
x2-4x+3=x-1,
x2-5x+4=0,
解得 x1=1、x2=4;
当x=1时,y=-x+3=2;
当x=4时,y=-x+3=-1;
∴E3(1,2)、E4(4,-1).
综上,存在符合条件的点E,且坐标为:(2+


2
,1-


2
)、(2-


2
,1+


2
)、(1,2)或(4,-1).
举一反三
如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE-ED-DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分).则下列结论错误的是(  )
A.AD=BE=5cm
B.cos∠ABE=
3
5
C.当0<t≤5时,y=
2
5
t2
D.当t=
29
4
秒时,△ABE△QBP

题型:不详难度:| 查看答案
如图,抛物线y=ax2-4ax+c(a≠0)经过A(0,-1),B(5,0)两点,点P是抛物线上的一个动点,且位于直线AB的下方(不与A,B重合),过点P作直线PQ⊥x轴,交AB于点Q,设点P的横坐标为m.
(1)求a,c的值;
(2)设PQ的长为S,求S与m的函数关系式,写出m的取值范围;
(3)以PQ为直径的圆与抛物线的对称轴l有哪些位置关系?并写出对应的m取值范围.(不必写过程)
题型:不详难度:| 查看答案
如图,设抛物线C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2.
(1)求a的值及点B的坐标;
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为l,且l与x轴交于点N.
①若l过△DHG的顶点G,点D的坐标为(1,2),求点N的横坐标;
②若l与△DHG的边DG相交,求点N的横坐标的取值范围.
题型:不详难度:| 查看答案
如图,在矩形ABCD中,AD=12,AB=8,在线段BC上任取一点P,连接DP,作射线PE⊥DP,PE与直线AB交于点E.
(1)设CP=x,BE=y,试写出y关于x的函数关系式;
(2)当点P在什么位置时,线段BE最长?
题型:不详难度:| 查看答案
如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=4x-
1
2
x2
刻画,斜坡可以用一次函数y=
1
2
x
刻画.
(1)求小球到达的最高点的坐标;
(2)小球的落点是A,求点A的坐标.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.