(1)依题意,设抛物线的解析式为 y=a(x-2)2-1,代入C(O,3)后,得: a(0-2)2-1=3,a=1 ∴抛物线的解析式:y=(x-2)2-1=x2-4x+3.
(2)由(1)知,A(1,0)、B(3,0); 设直线BC的解析式为:y=kx+3,代入点B的坐标后,得: 3k+3=0,k=-1 ∴直线BC:y=-x+3; 由(1)知:抛物线的对称轴:x=2,则 D(2,1); ∴AD==,AC==,CD==2, 即:AC2=AD2+CD2,△ACD是直角三角形,且AD⊥CD; ∴S△ACD=AD•CD=××2=2.
(3)由题意知:EF∥y轴,则∠FED=∠OCB,若△OCB与△FED相似,则有: ①∠DFE=90°,即 DF∥x轴; 将点D纵坐标代入抛物线的解析式中,得: x2-4x+3=1,解得 x=2±; 当x=2+时,y=-x+3=1-; 当x=2-时,y=-x+3=1+; ∴E1(2+,1-)、E2(2-,1+). ②∠EDF=90°; 易知,直线AD:y=x-1,联立抛物线的解析式有: x2-4x+3=x-1, x2-5x+4=0, 解得 x1=1、x2=4; 当x=1时,y=-x+3=2; 当x=4时,y=-x+3=-1; ∴E3(1,2)、E4(4,-1). 综上,存在符合条件的点E,且坐标为:(2+,1-)、(2-,1+)、(1,2)或(4,-1). |