某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该

某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该

题型:不详难度:来源:
某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?
答案
(1)售价降低了260-240=20元,
故月销量=45+
20
10
×7.5=60(吨).
(2)每吨的利润为(x-100)吨,销量为:(45+
260-x
10
×7.5),
则y=(x-100)(45+
260-x
10
×7.5)=-
3
4
x2+315x-24000.
(3)y=-
3
4
x2+315x-24000=-
3
4
(x-210)2+9075,
故该经销店要获得最大月利润,材料的售价应定为每吨210元.
答:该经销店要获得最大月利润,售价应定为每吨210元.
举一反三
某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,根据销售经验,销售单价每提高1元,销售量相应减少10个.
(1)设销售单价提高x元(x为正整数),写出每月销售量y(个)与x(元)之间的函数关系式;
(2)假设这种篮球每月的销售利润为w元,试写出w与x之间的函数关系式,并通过配方讨论,当销售单价定为多少元时,每月销售这种篮球的利润最大,最大利润为多少元?
题型:不详难度:| 查看答案
抛物线y=(x+m)(x-4)与x轴的一个交点为点A,与y轴的交点为点B,其中m>0,且△OAB的面积为4,O为原点,求过A,B两点的一次函数的解析式.
题型:不详难度:| 查看答案
已知抛物线y=x2+kx-
3
4
k2
(k为常数,且k>0).
(1)证明:此抛物线与x轴总有两个交点;
(2)设抛物线与x轴的两个交点分别是M、N.
①M、N两点之间的距离为MN=______.(用含k的式子表示)
②若M、N两点到原点的距离分别为OM、ON,且
1
ON
-
1
OM
=
2
3
,求k的值.
题型:不详难度:| 查看答案
已知抛物线过A(-1,0)和B(3,0)两点,与y轴交于点C,且BC=3


2
,则抛物线的解析式______.
题型:不详难度:| 查看答案
将进货单价为50元的某种商品按零售价每个80元出售,每天能卖出20个,若这种商品的零售价在一定范围内每降1元,其销售量就增加1个,则为了获得最大利润,应降价______元.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.