对于函数f(x)=acosx+bx2+c,其中a,b,c∈R,适当地选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果只可能是( )A.4和6B
题型:单选题难度:简单来源:不详
对于函数f(x)=acosx+bx2+c,其中a,b,c∈R,适当地选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果只可能是( ) |
答案
D |
解析
∵f(-x)=acos(-x)+b(-x)2+c=acosx+bx2+c=f(x),∴函数f(x)是偶函数,故选D. |
举一反三
已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2007)的值为( ) |
设函数f(x)=为奇函数,则实数a= . |
已知奇函数f(x)满足f(x+2)=-f(x),且当x∈(0,1)时,f(x)=2x,则f()的值为 . |
已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(-1)= . |
函数y=f(x)(x∈R)有下列命题: ①在同一坐标系中,y=f(x+1)与y=f(-x+1)的图象关于直线x=1对称; ②若f(2-x)=f(x),则函数y=f(x)的图象关于直线x=1对称; ③若f(x-1)=f(x+1),则函数y=f(x)是周期函数,且2是一个周期; ④若f(2-x)=-f(x),则函数y=f(x)的图象关于(1,0)对称,其中正确命题的序号是 . |
最新试题
热门考点