已知函数f(x)=x2+ax+4x(x≠0).(1)若f(x)为奇函数,求a的值;(2)若f(x)在[3,+∞)上恒大于0,求a的取值范围.

已知函数f(x)=x2+ax+4x(x≠0).(1)若f(x)为奇函数,求a的值;(2)若f(x)在[3,+∞)上恒大于0,求a的取值范围.

题型:解答题难度:一般来源:不详
已知函数f(x)=
x2+ax+4
x
(x≠0)

(1)若f(x)为奇函数,求a的值;
(2)若f(x)在[3,+∞)上恒大于0,求a的取值范围.
答案
(1)由题意知,f(x)的定义域关于原点对称,
若f(x)为奇函数,则f(-x)=
(-x)2+a(-x)+4
-x
=-f(x)

(-x)2+a(-x)+4
-x
=-
x2+ax+4
x
,解得a=0.
(2)由f(x)=
x2+ax+4
x
得,f′(x)=1-
4
x2

∴在[3,+∞)上f′(x)>0,∴f(x)在[3,+∞)上单调递增,
∴f(x)在[3,+∞)上恒大于0只要f(3)大于0即可,即3a+13>0,解得a>-
13
3

故a的取值范围为a>-
13
3
举一反三
f(x)=
x3
3
,对任意实数t,记gt(x)=t
2
3
x-
2
3
t

(I)求函数y=f(x)-g8(x)的单调区间;
(II)求证:(ⅰ)当x>0时,f(x)≥gt(x)对任意正实数t成立;
(ⅱ)有且仅有一个正实数x0,使得g8(x0)≥gt(x0)对任意正实数t成立.
题型:解答题难度:一般| 查看答案
已知二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,且有f(c)=0,当0<x<c时,恒有f(x)>0.
(1)(文)当a=1,c=
1
2
时,求出不等式f(x)<0的解;
(2)(理)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;
(4)若f(0)=1,且f(x)≤m2-2km+1,对所有x∈[0,c],k∈[-1,1]恒成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
已知y=f(x)是定义在R上的奇函数,且y=f(x+
π
2
)
为偶函数,对于函数y=f(x)有下列几种描述,其中描述正确的是(  )
①y=f(x)是周期函数;②x=π是它的一条对称轴
③(-π,0)是它图象的一个对称中心;④当x=
π
2
时,它一定取最大值
A.①②B.①③C.②④D.②③
题型:单选题难度:简单| 查看答案
函数f(x)=
x


9-x2
(  )
A.是奇函数但不是偶函数
B.是偶函数但不是奇函数
C.既是奇函数又是偶函数
D.既不是奇函数又不是偶函数
题型:单选题难度:简单| 查看答案
已知函数f(x)=ln2(1+x)-
x2
1+x
.

(I)求函数f(x)的单调区间;
(Ⅱ)若不等式(1+
1
n
)n+a≤e
对任意的n∈rmN*都成立(其中e是自然对数的底数).求a的最大值.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.