已知f(x)=ax7-bx5+cx3+2,且f(-5)=m则f(5)+f(-5)的值为( )A.4B.0C.2mD.-m+4
题型:单选题难度:一般来源:不详
已知f(x)=ax7-bx5+cx3+2,且f(-5)=m则f(5)+f(-5)的值为( ) |
答案
设g(x)=ax7-bx5+cx3,则g(x)=-ax7+bx5-cx3=-g(x), ∴g(5)=-g(-5),即g(5)+g(-5)=0 ∴f(5)+f(-5)=g(5)+g(-5)+4=4, 故选A. |
举一反三
若函数f(x)是奇函数,且当x∈(-∞,0)时f(x)为增函数,f(-3)=0,又g(x)=x2+x+1,则不等式f(x)g(x)<0的解集为______. |
已知函数f(x)=lg[(a2-1)x2+(a+1)x+1] (1)若f(x)的定义域为R,求实数a的取值范围; (2)若f(x)的值域为R,求实数a的取值范围. |
下列说法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,+a+4])是偶函数,则实数b=2;②f(x)=+既是奇函数又是偶函数;③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞]时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f(x•y)=x•f(y)+y•f(x),则f(x)是奇函数.其中所有正确命题的序号是 ______. |
已知函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)=0,且0<x1<x2.若f(x)在(x2,+∞)上是增函数,则b的取值范围是______. |
定义在(-∞,0)∪(0,+∞)上的偶函数f(x)满足xf"(x)>0,对定义域内的x1,x2.若x1>x2,x1+x2>0,则以下结论正确的是( )A.f(x1)>f(x2) | B.f(-x1)≥f(x2) | C.f(x1)<f(-x2) | D.f(x1),f(x2)的大小与x1,x2的取值有关 |
|
最新试题
热门考点