已知函数的图象在上连续,定义:,.其中,表示函数在上的最小值,表示函数在上的最大值.若存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”.(Ⅰ)若,

已知函数的图象在上连续,定义:,.其中,表示函数在上的最小值,表示函数在上的最大值.若存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”.(Ⅰ)若,

题型:不详难度:来源:
已知函数的图象在上连续,定义:.其中,表示函数上的最小值,表示函数上的最大值.若存在最小正整数,使得对任意的成立,则称函数上的“阶收缩函数”.
(Ⅰ)若,试写出的表达式;
(Ⅱ)已知函数,试判断是否为上的“阶收缩函数”.如果是,求出对应的;如果不是,请说明理由;
(Ⅲ)已知,函数上的2阶收缩函数,求的取值范围.
答案
(Ⅰ);(Ⅱ)存在k=4,使得f(x)是[﹣1,4]上的4阶收缩函数.(Ⅲ)
解析

试题分析:(Ⅰ)根据f(x)=cosx的最大值为1,可得f1(x)、f2(x)的解析式.
(Ⅱ)根据函数f(x)=x2在x∈[-1,4]上的值域,先写出f1(x)、f2(x)的解析式,再由f2(x)-f1(x)≤k(x-a)求出k的范围得到答案.
(3)先对函数f(x)进行求导判断函数的单调性,进而写出f1(x)、f2(x)的解析式,
然后再由f2(x)-f1(x)≤k(x-a)求出k的范围得到答案.
试题解析:
(Ⅰ)由题意可得:2分
(Ⅱ)
所以                             4分
时,,∴,即
时,,∴,即
时,,∴,即
综上所述,∴
即存在k=4,使得f(x)是[﹣1,4]上的4阶收缩函数.                     7分
(Ⅲ).函数f(x)的变化情况如下:
x
(-,0)
0
(0,2)
2
(2,+


0
+
0

f(x)

0

4

令f(x)=0,解得x=0或3.                                           
(ⅰ)b≤2时,f(x)在[0,b]上单调递增,因此
因为是[0,b]上的2阶收缩函数,所以,①对x∈[0,b]恒成立;②存在x∈[0,b],使得成立.
①即:对x∈[0,b]恒成立,由,解得:0≤x≤1或x≥2,
要使对x∈[0,b]恒成立,需且只需0<b≤1.
②即:存在x∈[0,b],使得成立.由得:x<0或,所以
综合①②可得:.                                    10分
(ⅱ)当b>2时,显然有,由于f(x)在[0,2]上单调递增,根据定义可得:,可得
此时,不成立.                               12分
综合ⅰ)ⅱ)可得:的取值范围为.                       13分
(注:在(ⅱ)中只要取区间内的一个数来构造反例即可,这里用只是因为简单而已)
举一反三
已知函数
(1)当时,求的单调区间;
(2)若,设是函数的两个极值点,且,记分别为的极大值和极小值,令,求实数的取值范围.
题型:不详难度:| 查看答案
已知函数
(1)当时,如果函数仅有一个零点,求实数的取值范围;
(2)当时,试比较与1的大小;
(3)求证:
题型:不详难度:| 查看答案
已知函数 .
(Ⅰ)若函数在区间其中上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.
题型:不详难度:| 查看答案
已知函数),
(Ⅰ)证明:当时,对于任意不相等的两个正实数,均有成立;
(Ⅱ)记
(ⅰ)若上单调递增,求实数的取值范围;
(ⅱ)证明:.
题型:不详难度:| 查看答案
已知a为给定的正实数,m为实数,函数f(x)=ax3-3(m+a)x2+12mx+1.
(Ⅰ)若f(x)在(0,3)上无极值点,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.