已知是实数,函数,和,分别是的导函数,若在区间上恒成立,则称和在区间上单调性一致.(Ⅰ)设,若函数和在区间上单调性一致,求实数的取值范围;(Ⅱ)设且,若函数和在

已知是实数,函数,和,分别是的导函数,若在区间上恒成立,则称和在区间上单调性一致.(Ⅰ)设,若函数和在区间上单调性一致,求实数的取值范围;(Ⅱ)设且,若函数和在

题型:不详难度:来源:
已知是实数,函数,分别是的导函数,若在区间上恒成立,则称在区间上单调性一致.
(Ⅰ)设,若函数在区间上单调性一致,求实数的取值范围;
(Ⅱ)设,若函数在以为端点的开区间上单调性一致,求的最大值.
答案
(Ⅰ);(Ⅱ).
解析

试题分析:(Ⅰ)由不等式恒成立,即可求出结果. (Ⅱ)在以为端点的开区间上恒成立,对的大小分类讨论,以确定的取值范围,从而去确定的最大值.
试题解析:由已知,
(Ⅰ)由题设“单调性一致”定义知,在区间上恒成立,
 在区间上恒成立,
,所以,所以,在区间上恒成立,
在区间上恒成立,而上最大值
所以,,即
(Ⅱ)由“单调性一致”定义知,在以为端点的开区间上恒成立,
在以为端点的开区间上恒成立,
,所以,由,得
①若,则开区间为,取,由知,在区间上单调性不一致,不符合题设;
②若,因均为非负,故不在以为端点的开区间内;所以,只有可能在区间上;
在以为端点的区间上恒成立,知要么不小于中的大者,要么不大于中的小者;
因为都不大于0,所以,,所以,由,所以
时,由在区间上恒成立,即在区间上恒成立,知最大值为,而由解得
此时,,配方后知,取不到最大值;
时,显然,此时,当,即时,取得最大值;综上,的最大值为.
举一反三
若函数在区间,0)内单调递增,则取值范围是(   )
A.[,1)B.[,1)C.D.(1,)

题型:不详难度:| 查看答案
已知函数
(1)若函数在区间上存在极值点,求实数的取值范围;
(2)当时,不等式恒成立,求实数的取值范围;
(3)求证:.(为自然对数的底数)
题型:不详难度:| 查看答案
(本小题满分15分)已知函数
(1)当时,求最小值;
(2)若存在单调递减区间,求的取值范围;
(3)求证:).
题型:不详难度:| 查看答案
已知函数
(1)若的极值点,求实数的值;
(2)若上为增函数,求实数的取值范围;
(3)当时,方程有实根,求实数的最大值.
题型:不详难度:| 查看答案
已知函数.
(1)是否存在点,使得函数的图像上任意一点P关于点M对称的点Q也在函数的图像上?若存在,求出点M的坐标;若不存在,请说明理由;
(2)定义,其中,求
(3)在(2)的条件下,令,若不等式恒成立,求实数的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.