已知函数f(x)=alnx-ax-3(a∈R).(1)求函数f(x)的单调区间;(2)函数y=f(x)的图象在x=4处的切线的斜率为32,若函数g(x)=13x

已知函数f(x)=alnx-ax-3(a∈R).(1)求函数f(x)的单调区间;(2)函数y=f(x)的图象在x=4处的切线的斜率为32,若函数g(x)=13x

题型:不详难度:来源:
已知函数f(x)=alnx-ax-3(a∈R).
(1)求函数f(x)的单调区间;
(2)函数y=f(x)的图象在x=4处的切线的斜率为
3
2
,若函数g(x)=
1
3
x3+x2[f′(x)+
m
2
]在区间(1,3)上不是单调函数,求m的取值范围.
答案
解 (1)f′(x)=
a(1-x)
x
(x>0),
①当a>0时,若x∈(0,1),则f′(x)>0;若x∈(1,+∞),则f′(x)<0,
∴当a>0时,f(x)的单调递增区间为(0,1],单调递减区间为[1,+∞);
②当a<0时,若x∈(1,+∞),则f′(x)>0;若x∈(0,1),则f′(x)<0,
∴当a<0时,f(x)的单调递增区间为[1,+∞),单调递减区间为(0,1];
③当a=0时,f(x)=-3,f(x)不是单调函数,无单调区间.
(2)由题意知,f′(4)=-
3a
4
=
3
2
,得a=-2,则f(x)=-2lnx+2x-3,
∴g(x)=
1
3
x3+x2(2-
2
x
+
m
2
)
=
1
3
x3+(
m
2
+2)x2-2x,
∴g′(x)=x2+(m+4)x-2.
∵g(x)在区间(1,3)上不是单调函数,且g′(0)=-2<0,





g′(1)<0
g′(3)>0
,即





1+(m+4)-2<0
32+3(m+4)-2>0
解得-
19
3
<m<-3

故m的取值范围是(-
19
3
,-3).
举一反三
已知函数f(x)=ax+lnx(a∈R).
(Ⅰ)若a=2,求曲线y=f(x)在x=1处切线的斜率;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.
题型:惠州模拟难度:| 查看答案
已知函数f(x)=ax3+(2a-1)x2+1,当x=-1时,函数f(x)有极值.
(I)求实数a的值;
(II)求函数f(x)在在[-1,1]的最大值和最小值.
题型:不详难度:| 查看答案
已知函数f(x)=2ax3+bx2-6x在x=±1处取得极值
(1)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;
(2)试求函数f(x)在x=-2处的切线方程;
(3)试求函数f(x)在区间[-3,2]上的最值.
题型:不详难度:| 查看答案
已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的图象与x轴交于A,B,C三点.若点B的坐标为(2,0),且函数f(x)在区间[-1,0]和[4,5]上有相同的单调性,在区间[0,2]和[4,5]上有相反的单调性.
(1)求c的值;
(2)求
b
a
的取值范围;
(3)求|AC|的最大值和最小值.
题型:不详难度:| 查看答案
函数y=x-lnx的单调增区间是______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.