(1)证明:∵f(x)=an-1x3-3[(t+1)an-an+1]x+1∴f"(x)=3an-1x2-3[(t+1)an-an+1], 根据已知f′()=0,即tan-1-(t+1)an+an+1=0,即an+1-an=t(an-an-1),当t≠1时,数列an+1-an是等比数列.(6分) (2)由于a2-a1=t2-t=t(t-1),所以an+1-an=(t-1)tn. 所以an=(an-an-1)+(an-1-an-2)++(a2-a1)+a1=(t-1)tn-1+(t-1)tn-1++(t-1)t+t=(t-1)×+t=tn. 所以数列an的通项公式an=tn.(12分) |