已知三棱锥O-ABC中,OA、OB、OC两两互相垂直,OC=1,OA=x, OB=y,若x+y=4,则已知三棱锥O-ABC体积的最大值是      .    

已知三棱锥O-ABC中,OA、OB、OC两两互相垂直,OC=1,OA=x, OB=y,若x+y=4,则已知三棱锥O-ABC体积的最大值是      .    

题型:不详难度:来源:
已知三棱锥O-ABC中,OA、OB、OC两两互相垂直,OC=1,OA=x, OB=y,若x+y=4,则已知三棱锥O-ABC体积的最大值是      .    
答案

解析
解:∵x>0,y>0且x+y=4,
由基本不等式得:
xy≤[(x+y )/2 ]2=4
又∵OA、OB、OC两两互相垂直,OC=1,
∴三棱锥O-ABC体积V="1" /3 ×1 /2 ×OA×OB×OC="1" /6 xy≤2/ 3即三棱锥O-ABC体积的最大值是2/ 3
故答案为:2 3
举一反三
是正方体,点为正方体对角线的交点,过点的任一平面,正方体的八个顶点到平面的距离作为集合的元素,则集合中的元素个数最多为_____    ___个.
题型:不详难度:| 查看答案
在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是线段BC的中点O。

(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值。
题型:不详难度:| 查看答案
若四面体的三组对棱分别相等,即,则________.(写出所有正确结论编号)
①四面体每组对棱相互垂直
②四面体每个面的面积相等
③从四面体每个顶点出发的三条棱两两夹角之和大于而小于
④连接四面体每组对棱中点的线段互垂直平分
⑤从四面体每个顶点出发的三条棱的长可作为一个三角形的三边长
题型:不详难度:| 查看答案
如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作平面角的平面与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,则两点间的球面距离为(   )
A.B.C.D.

题型:不详难度:| 查看答案
下列命题中,正确的个数是
①空间三点确定一个平面;                    ②经过空间三点有一个平面;
③经过圆上三点有且只有一个平面;      ④两条直线确定一个平面。
A.1B.2C.3D.1或3

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.