如图:在二面角α-l-β中,A、B∈α,C、D∈l,ABCD为矩形,p∈β,PA⊥α,且PA=AD,M、N依次是AB、PC的中点,(1)求二面角α-l-β的大小

如图:在二面角α-l-β中,A、B∈α,C、D∈l,ABCD为矩形,p∈β,PA⊥α,且PA=AD,M、N依次是AB、PC的中点,(1)求二面角α-l-β的大小

题型:不详难度:来源:
如图:在二面角α-l-β中,A、B∈α,C、D∈l,ABCD为矩形,p∈β,PA⊥α,且PA=AD,M、N依次是AB、PC的中点,
(1)求二面角α-l-β的大小
(2)求证:MN⊥AB
(3)求异面直线PA和MN所成角的大小.
答案
(1)连接PD,∵PA⊥α.∠ADC=90°.
∴∠PDC=90°(三垂线定理).
∠ADP为二面角α-l-β的平面角.
∴△PAD为等腰直角三角形.
∴二面角α-l-β为45°.
(2)设E为DC中点,连接NE,
则NEPD,MEAD.
由面面平行的判定定理得:
平面MEN平面APD.
ABCD
∵CD⊥平面APD
∴AB⊥平面APD
∴AB⊥平面MEN.
∴AB⊥MN.
(3)设F为DP中点.连接AG,GN
则FN=
1
2
DC=AM.FNDCAM.
∴FNMA为平行四边形
则异面直线PA与MN的夹角为∠FAP
∠FAP=
1
2
∠PAD=45°(等腰直角三角形DAP上直角的一半).
举一反三
在直角坐标系中,A(-2,3),B(3,-2)沿x轴把直角坐标系折成90°的二面角,则此时线段AB的长度为(  )
A.2


5
B.


38
C.5


2
D.4


2
题型:不详难度:| 查看答案
如图,在平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.
(1)求二面角E-AB-D的大小;
(2)求四面体ABDE的表面积.
题型:不详难度:| 查看答案
如图,在正三棱柱ABC-A1B1C1中,点D,D1分别为棱BC,B1C1的中点.
(1)求证:直线A1D1平面ADC1
(2)求证:平面ADC1⊥平面BCC1B1
(3)设底面边长为2,侧棱长为4,求二面角C1-AD-C的余弦值.
题型:不详难度:| 查看答案
如图,在三棱锥P-ABC中,PB⊥面ABC,∠ABC=90°,AB=BC=2,∠PAB=45°,点D,E,F分别是AC,AB,BC的中点.
(1)求证:EF⊥PD;
(2)求直线PF与平面PBD所成的角的大小;
(3)求二面角E-PF-B的大小.
题型:不详难度:| 查看答案
在矩形ABCD中,AB=3,AD=4,PA⊥平面ABCD,PA=
4
5


3
,那么二面角A-BD-P的大为(  )
A.30°B.45°C.60°D.75°
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.