已知平面上的动点P(x,y)及两个定点A(-2,0),B(2,0),直线PA,PB的斜率分别为K1,K2且K1K2=-(1).求动点P的轨迹C方程;(2).设直

已知平面上的动点P(x,y)及两个定点A(-2,0),B(2,0),直线PA,PB的斜率分别为K1,K2且K1K2=-(1).求动点P的轨迹C方程;(2).设直

题型:不详难度:来源:
已知平面上的动点P(x,y)及两个定点A(-2,0),B(2,0),直线PA,PB的斜率分别为K1,K2且K1K2=-
(1).求动点P的轨迹C方程;
(2).设直线L:y=kx+m与曲线C交于不同两点,M,N,当OM⊥ON时,求O点到直线L的距离(O为坐标原点)
答案
(1);(2).
解析

试题分析:本题主要考查椭圆的方程、直线与椭圆的位置关系、向量的运算、点到直线的距离公式等基础知识,意在考查考生的运算求解能力、推理论证能力以及利用解析法、函数与方程思想的解题能力.第一问,利用P、A、B点的坐标,先求出代入到中整理出x,y的关系,即点P的轨迹方程;第二问,设出M、N坐标,令直线与椭圆方程联立,消参得到关于x的方程,由于交于M、N两个点,所以,利用韦达定理,得,由,利用向量的垂直的充要条件得到的关系式,利用点到直线的距离公式,利用上述的关系式得到数值.
试题解析:(1)设,由已知得
整理得,即   4分
(2)设M
消去得:

   8分



满足   10分
点到的距离为
   12分
举一反三
已知椭圆的左焦点为与过原点的直线相交于两点,连接,若,则椭圆的离心率
A.B.C.D.

题型:不详难度:| 查看答案
(理)已知点是平面直角坐标系上的一个动点,点到直线的距离等于点到点的距离的2倍.记动点的轨迹为曲线.
(1)求曲线的方程;
(2)斜率为的直线与曲线交于两个不同点,若直线不过点,设直线的斜率分别为,求的数值;
(3)试问:是否存在一个定圆,与以动点为圆心,以为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由.
题型:不详难度:| 查看答案
巳知椭圆的离心率是.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.
题型:不详难度:| 查看答案
过椭圆的一个焦点作垂直于实轴的弦是另一焦点,若∠,则椭圆的离心率等于(    )
A.B.C.D.

题型:不详难度:| 查看答案
设椭圆C1的右焦点为F,P为椭圆上的一个动点.
(1)求线段PF的中点M的轨迹C2的方程;
(2)过点F的直线l与椭圆C1相交于点A、D,与曲线C2顺次相交于点B、C,当时,求直线l的方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.