已知抛物线y2=2px(p>0)的焦点为F,直线l过点A(4,0)且与抛物线交于P,Q两点.并设以弦PQ为直径的圆恒过原点.(Ⅰ)求焦点坐标;(Ⅱ)若FP+FQ

已知抛物线y2=2px(p>0)的焦点为F,直线l过点A(4,0)且与抛物线交于P,Q两点.并设以弦PQ为直径的圆恒过原点.(Ⅰ)求焦点坐标;(Ⅱ)若FP+FQ

题型:不详难度:来源:
已知抛物线y2=2px(p>0)的焦点为F,直线l过点A(4,0)且与抛物线交于P,Q两点.并设以弦PQ为直径的圆恒过原点.
(Ⅰ)求焦点坐标;
(Ⅱ)若


FP
+


FQ
=


FR
,试求动点R的轨迹方程.
答案
(Ⅰ)设直线l方程为x=ky+4,代入y2=2px得y2-2kpy-8p=0
设P(x1,y1),Q(x2,y2),则有y1+y2=2kp,y1y2=-8p


OP


OQ
=0

故0=x1x2+y1y2=(ky1+4)(ky2+4)-8p=k2y1y2+4k(y1+y2)+16-8p
即0=-8k2 p+8k2p+16-8p,得p=2,焦点F(1,0).
(Ⅱ)设R(x,y),由


FP
+


FQ
=


FR

得(x1-1,y1)+(x2-1,y3)=(x-1,y)
所以x1+x2=x+1,y1+y2=y
而y12=4x1,y22=4x2
可得y(y1-y2)=(y1+y2)(y1-y2)=4(x1-x2
又FR的中点坐标为M(
x+1
2
y
2
)

当x1≠x2时,利用kPQ=kMA
4
y
=
y1-y2
x1-x2
=
y
2
x+1
2
-4

整理得,y2=4x-28.
当x1=x2时,R的坐标为(7,0),也满足y2=4x-28.
所以y2=4x-28即为动点R的轨迹方程.
举一反三
过双曲线x2-
y2
3
=1
的左焦点F作直线l交双曲线于不同的两点P与Q,则满足|PQ|=6的直线l的条数有(  )
A.1B.2C.3D.4
题型:嘉定区二模难度:| 查看答案
过点M(1,1)的直线l与曲线C:
x2
4
+
y2
9
=1
相交于A、B两点,若点M是弦AB的中点则直线l的方程为______.
题型:武昌区模拟难度:| 查看答案
已知椭圆
x2
a2
+
y2
b2
=1,(a>b>0)
左、右焦点分别为F1(-c,0),F2(c,0),点A、B坐标为A(a,0),B(0,b),若△ABC面积为


3
2
,∠BF2A=120°.
(1)求椭圆的标准方程;
(2)若直线y=kx+2与椭圆交于不同的两点M、N,且以MN为直径的圆恰好过原点,求实数k的取值;
(3)动点P使得


F1P


F1F2


PF1


PF2


F2F
1


F2P
成公差小于零的等差数列,记θ为向量


PF1


PF2
的夹角,求θ的取值范围.
题型:崇明县二模难度:| 查看答案
已知点M(-5,0)、C(1,0),B分


MC
所成的比为2.P是平面上一动点,且满足|


PC
|•|


BC
|=


PB


CB

(1)求点P的轨迹C对应的方程;
(2)已知点A(m,2)在曲线C上,过点A作曲线C的两条弦AD、AE,且AD、AE的斜率k1、k2满足k1k2=2.试推断:动直线DE有何变化规律,证明你的结论.
题型:重庆模拟难度:| 查看答案
在平面直角坐标系中,若直线ax-y+1=0经过抛物线y2=4x的焦点,则实数a=______.
题型:河东区一模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.