试题分析:(1)要求甲恰好得30分的概率,我们分析活动规则后可得,甲恰好得30分,说明甲前两题都答对,而第三题答错,代入分步事件概率公式即可得到答案. (2)设乙的得分为ξ,则ξ的取值为0,10,30,60,我们根据活动规则,分析出ξ取不同值时的情况,代入概率公式即可求解.(3)要求甲恰好比乙多30分的概率,我们要先分析甲恰好比乙多30分的发生情况,由(2)的结论,共有两种情况,即甲恰好得30分且乙恰好得0分,或是甲恰好得60分且乙恰好得30分,代入概率公式即可求解 。 解:(I)甲恰好得30分,说明甲前两题都答对,而第三题答错,其概率为,-------3分 (II)的取值为0,10, 30,60.--------4分 , , 的概率分布如下表: ---------8分 -------10分 (III)设甲恰好比乙多30分为事件A,甲恰好得30分且乙恰好得0分为事件B1, 甲恰好得60分且乙恰好得30分为事件B2,则A=为互斥事件. . 所以,甲恰好比乙多30分的概率为-----------14分 点评:解决该试题的关键是对于要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解。 |