函数f(x)是奇函数,当x>0时,f(x)=x3-cosx,当x<0时,f(x)的表达式为( )A.x3+cosxB.-x3+cosxC.-x3-cosxD.
题型:单选题难度:简单来源:不详
函数f(x)是奇函数,当x>0时,f(x)=x3-cosx,当x<0时,f(x)的表达式为( )A.x3+cosx | B.-x3+cosx | C.-x3-cosx | D.x3-cosx |
|
答案
设x<0,则-x>0 ∴f(-x)=(-x)3-cos(-x)=-x3-cosx 又∵f(x)是奇函数 ∴f(x)=-f(-x)=x3+cosx 故选A. |
举一反三
设f(x)是R上的偶函数,且在(-∞,0)上为减函数,若x1<0,且x1+x2>0,则( )A.f(x1)>f(x2) | B.f(x1)=f(x2) | C.f(x1)<f(x2) |
|
设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“亲密函数”,区间[a,b]称为“亲密区间”.若f(x)=x2+x+2与g(x)=2x+1在[a,b]上是“亲密函数”,则其“亲密区间”可以是( )A.[0,2] | B.[0,1] | C.[1,2] | D.[-1,0] |
|
设函数f(x)为定义域在R上的以3为周期的奇函数,若f(2)=,则不等式f(1)>1的解是( )A.a< | B.-1<a< | C.a>或a<-1 | D.a<且a≠-1 |
|
已知定义在R上的函数y=f (x)满足下列三个条件:①对任意的x∈R,都有f(x+4)=f (x); ②对于任意的0≤x1<x2≤2,都有f(x1)>f(x2); ③y=f(x-2)的图象关于y轴对称,则下列结论中,正确的是( )A.f(-4.5)<f(-1.5)<f(7) | B.f(-4.5)<f(7)<f(-1.5) | C.f(7)<f(-4.5)<f(-1.5) | D.f(-1.5)<f(7)<f(-4.5) |
|
设f(x)=,要使f(x)在(-∞,∞)内连续,则a的值为( ) |
最新试题
热门考点