已知函数f(x)=-x2+2lnx.(Ⅰ)求函数f(x)的最大值;(Ⅱ)若函数f(x)与g(x)=x+ax有相同极值点,(i)求实数a的值;(ii)若对于“x1

已知函数f(x)=-x2+2lnx.(Ⅰ)求函数f(x)的最大值;(Ⅱ)若函数f(x)与g(x)=x+ax有相同极值点,(i)求实数a的值;(ii)若对于“x1

题型:解答题难度:一般来源:福州模拟
已知函数f(x)=-x2+2lnx.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)若函数f(x)与g(x)=x+
a
x
有相同极值点,
(i)求实数a的值;
(ii)若对于“x1,x2∈[
1
e
,3],不等式
f(x1)-g(x2)
k-1
≤1恒成立,求实数k的取值范围.
答案
(Ⅰ)求导函数可得:f′(x)=-2x+
2
x
=-
2(x+1)(x-1)
x
(x>0)
由f′(x)>0且x>0得,0<x<1;由f′(x)<0且x>0得,x>1.
∴f(x)在(0,1)上为增函数,在(1,+∞)上为减函数.
∴函数f(x)的最大值为f(1)=-1.
(Ⅱ)∵g(x)=x+
a
x
,∴g′(x)=1-
a
x2

(ⅰ)由(Ⅰ)知,x=1是函数f(x)的极值点,
又∵函数f(x)与g(x)=x+
a
x
有相同极值点,
∴x=1是函数g(x)的极值点,
∴g′(1)=1-a=0,解得a=1.
(ⅱ)∵f(
1
e
)=-
1
e2
-2,f(1)=-1,f(3)=-9+2ln3,
∵-9+2ln3<-
1
e2
-2<=1,即f(3)<f(
1
e
)<f(1),
∴x1∈[[
1
e
,3]时,f(x1min=f(3)=-9+2ln3,f(x1max=f(1)=-1
由(ⅰ)知g(x)=x+
1
x
,∴g′(x)=1-
1
x2

当x∈[
1
e
,1)时,g′(x)<0;当x∈(1,3]时,g′(x)>0.
故g(x)在[
1
e
,1)为减函数,在(1,3]上为增函数.
g(
1
e
)=e+
1
e
,g(1)=2,g(3)=
10
3

而2<e+
1
e
10
3
,∴g(1)<g(
1
e
)<g(3)
∴x2∈[[
1
e
,3]时,g(x2min=g(1)=2,g(x2max=g(3)=
10
3

①当k-1>0,即k>1时,
对于“x1,x2∈[
1
e
,3],不等式
f(x1)-g(x2)
k-1
≤1恒成立,等价于k≥[f(x1)-g(x2)]max+1
∵f(x1)-g(x2)≤f(1)-g(1)=-1-2=-3,
∴k≥-2,又∵k>1,∴k>1.
②当k-1<0,即k<1时,
对于“x1,x2∈[
1
e
,3],不等式
f(x1)-g(x2)
k-1
≤1恒成立,等价于k≤[f(x1)-g(x2)]min+1
∵f(x1)-g(x2)≥f(3)-g(3)=-
37
3
+2ln3

∴k≤-
34
3
+2ln3

又∵k<1,∴k≤-
34
3
+2ln3

综上,所求的实数k的取值范围为(-∞,-
34
3
+2ln3
]∪(1,+∞).
举一反三
函数y=1-
sinx
x4+2x2+1
(x∈R)的最大值与最小值的和为______.
题型:填空题难度:一般| 查看答案
设a为实常数,y=f(x)是定义在R上的奇函数,当x<0时,f(x)=9x+
a2
x
+7.若f(x)≥a+1对一切x≥0成立,则a的取值范围为______.
题型:填空题难度:一般| 查看答案
A是由定义在[2,4]上且满足如下条件的函数φ(x)组成的集合:
(1)对任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常数L(0<L<1),使得对任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|.
(Ⅰ)设φ(x)=
31+x

,x∈[1,2],证明:φ(x)∈A;
(Ⅱ)设φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的.
题型:解答题难度:一般| 查看答案
已知偶函数f(x)在[0,+∞)上是减函数,则f(1)和f(-10)的大小关系为______.
题型:填空题难度:一般| 查看答案
已知f(x)为偶函数,则函数f(x-1)的图象一定关于直线______ 对称.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.